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49. Andrea Bertozzi, Invited talk in SIAM Minisymposium on New Trends in Mathematical Methods in Imaging Science, Rick Chartrand, 

Stacey Levine, Jennifer Mueller, and Luminita Vese organizers, Joint Math Meetings, San Francisco, Sat Jan 16, 2010.

50. Andrea Bertozzi, Invited talk, China Lake Distinguished Speakers Colloquium Series, China Lake Naval Air Warfare Center, 

Ridgecrest, CA, Feb 2, 2010.

51. Andrea Bertozzi, Invited talk Rand Corp. Santa Monica, Feb 11, 2010.

52. Andrea Bertozzi, Invited talk, Session on ”Traffic, Crowds and Society”, AAAS Annual Meeting, San Diego, February 20, 2010.

53. Andrea Bertozzi, Invited talk, Imperial College London, Institute for Mathematical Sciences, invited talk in three part session on 

Geometric Mechanics, Darryl Holm host, March 8, 2010.

54. Andrea Bertozzi, Fluid Mechanics Seminar, DAMTP, Univ. of Cambridge, UK, March 5, 2010.

55. Andrea Bertozzi, Brown University, Mathematics Department, Distinguished Lecture Series, three one hour lectures, March 11-12, 

2010.

56. Andrea Bertozzi, Brown University, Mathematics Department, faculty speaker, Symposium for Undergraduates in the Mathematical 

Sciences, 45 minute talk, March 13, 2010.

57. Andrea Bertozzi, Invited talk, Minisymposium on Advanced Frameworks for Restructuring High Dimensional Datasets, SIAM Conf. 

on Imaging Science, Chicago, IL April 13, 2010, Edward H. Bosch

Organizer.

58. Andrea Bertozzi, Invited talk, Plenary talk, Joint SIAM/RSME-SCM-SEMA Meeting on Emerging Topics in Dynamical Systems and 

Partial Differential Equations DSPDEs’10 June 1, 2010, Barcelona, Spain.

59. Andrea Bertozzi, Invited talk 2010 DTRA/NSF Algorithm workshop, talk on “Undergraduate Research Training in Defense 

Applications”, June 22, 2010, Chapel Hill, NC.

60. Andrea Bertozzi, Invited talk 2010 DTRA/NSF Algorithm workshop, talk on “Imaging of multispectral and hyperspectral data”, June 



23, 2010, Chapel Hill, NC.

61. Andrea Bertozzi, invited talk talk in workshop Fluid Dynamics Analysis and Numerics, a conference in honor of Tom Beale’s 60th 

Birthday, Duke Univ., Durham, NC June 28, 2010.

62. Andrea Bertozzi, invited talk at Park City Mathematics Institute, Program on Imaging Sciences, Park City UT, July 5, 2010.

63. Andrea Bertozzi, Graduate School of Engineering and Applied Sciences, Distinguished Lecture, Naval Postgraduate School, Sept. 2, 

2010.

64. Andrea Bertozzi, London Taught Course Centre 8 hour intensive course on Mathematics of Crime, Univ. College London, Sept. 9-10, 

2010.

65. Andrea Bertozzi, Department of Applied Mathematics and Statistics Johns Hopkins University, Colloquium Sept. 16, 2010.

66. Andrea Bertozzi, Allman Family Public Lecture, Southern Methodist University, Mathematics in the Real World, Sept. 23, 2010.

67. Andrea Bertozzi, Invited talk, IPAMworkshop on Machine Reasoning: Mission Focused Actions/Reactions Based on System 

Integration of Information Derived from Complex Real-World Data, Oct 19, 2010.

68. Andrea Bertozzi, Distinguished Lecture, Department of Mathematics, Simon Fraser Univ., Oct. 29, 2010.

69. Andrea Bertozzi, Invited talk, 9th Annual Image Fusion Workshop, Institute for Defense and Government Advancement, Tyson’s 

Corner, VA, November 16, 2010.

70. Andrea Bertozzi, Invited talk, RCIM Symposium Mathematical Aspects of Image Processing and Computer Vision 2010 Sapporo, 

Japan, November 26, 2010.

71. Andrea Bertozzi, Invited talk, NSF workshop on New Directions in Dynamical Systems Inspired by Biological, Energy, 

Environmental, and Information Sciences, Atlanta, GA, Jan 4, 2011

72. Andrea Bertozzi, Invited talk, Dynamics Days, Chapel Hill, NC, Jan 5, 2011.

73. Andrea Bertozzi, AMS Invited Address, Joint Mathematics Meetings, New Orleans, LA, Jan 7, 2011.

74. Andrea Bertozzi, Invited Talk (one hour), 2011 annual meeting of the Australian and New Zealand Industrial and Applied Mathematics 

division of the Australian Mathemtaical Society. ANZIAM 2011

in Glenelg, Australia, Feb. 1, 2011.

75. Andrea Bertozzi, PIMS Applied Mathematics Seminar, University of Saskatchewan, Saskatoon, March 14, 2011.

76. Andrea Bertozzi, Seminar, Ecole Normal Superieur de Cachan, Centre de Mathematiques et de leurs Applications, March 17, 2011.

77. Andrea Bertozzi, Groupe de travail - Mathematiques de la decision, Seminar, Univ. of Toulouse, March 24, 2011.

78. Andrea Bertozzi, Colloquium de L’Institut de Mathematiques de Toulouse, March 25, 2011.

79. Andrea Bertozzi, Mathematics Colloquium Univ. of Warwick, UK, June 3, 2011, ”Mathematics of Crime”.

80. Andrea Bertozzi, Nonlinear Diffusion: Applications, Analysis and Computation conference to celebrate the 60th Birthday of Charlie 

Elliot, Univ. Warwick, June 6-8, 2011, invited 45 minute talk.

81. Andrea Bertozzi, 7th East Asian SIAM meeting, Waseda University Kitakyushu Campus, Japan Keynote Talk, June 29, 2011.

82. Andrea Bertozzi, Invited talk, Minisymposium on Modern Methods and Applications of the Calculus of Variations: Image Processing , 

July 20, 2011, International Congress on Industrial and Applied

Mathematics, Vancouver BC.

83. Andrea Bertozzi, Invited talk, Duke Workshop on Sensing and Analysis of High-Dimensional Data (SAHD), July 26, 2011.

84. Andrea Bertozzi, Plenary talk, AWM 40th Anniversary Conference, ICERM, Brown University, September 18, 2011.

85. Andrea Bertozzi, Applied Mathematics Seminar, Mathematics of Crime, Harvard University, September 19, 2011.

86. Andrea Bertozzi,Widely Applied Mathematics Seminar, Swarming by Nature and by Design, Harvard University, September 20, 2011.

87. P. Jeffrey Brantingham, Repeats and Reprisals: The Dynamics of Burglary and Rival Gang Violence in Los Angeles. Invited lecture at 

the Workshop on Modeling and Analysis of Security, January 4-7,

2010, University of Chile, 2010.

88. P. Jeffrey Brantingham, “Agent-based and continuum models of crime pattern formation,” Invited lecture presented at the Agent-based 

Complex Systems workshop, Institute of Pure and Applied Mathematics, UCLA, October 12-14, 2009.

89. P. Jeffrey Brantingham, “Why seeking to reduce gang rivalries might increase gang violence,” UC Irvine Criminology, Law and 

Society, April 13, 2011.

90. P. Jeffrey Brantingham, “The Mathematical Ecology of Criminal Street Gangs,” UCLA Marschak Colloquium, April 8, 2011.

91. P. Jeffrey Brantingham, Stochastic Models of Crime with Practical Implications for Policing. Workshop on Geospatial Abduction 

Problems, University of Maryland, March 3-4, 2011.

92. P. Jeffrey Brantingham, “University-Agency Collaboration in Predictive Policing,” 10th Anniversary Celebration of the Institute for 

Canadian Urban Research, Simon Fraser University, February 3, 2011.

93. Maria D’Orsogna, invited talk, Kinetic and mean-field models in the socio-economic sciences, Edinburgh, Scotland, July 2009

94. Erik Lewis, poster presentation at the Agent-Based Complex Systems workshop at IPAM, October 12-14, 2009. “Comparing Gang 

Rivalries and Civilian Deaths in Iraq Using Self-Exciting Point Processes.”

95. George Mohler, “Agent-based, Bayesian Geographic Profiling” Workshop on Analysis and Modeling of Security,” Jan 4-7, 2010, 

Santiago Chile, 40 minute talk.



96. George Mohler, “Crime as a Self-Exciting Point Process: An innovative approach in crime prediction,” American Society of 

Criminology annual meeting, Nov 4-7, 2009, 20 minute talk.

97. Todd Wittman, Contributed talk. 25 minutes. “Image Processing in the UCLA REU Program.” International Conference on Technology 

in Collegiate Mathematics. Chicago, IL. March 2010.

98. Todd Wittman, Contributed talk. 20 minutes. ”Problems in Geospatial Image Processing.” Center for Nonlinear Analysis Summer 

School on Image Processing and PDEs. Pittsburgh, PA. June 2010.

99. Todd Wittman, “The UCLA Math REU Program: Getting Students Involved in Research.” University of Southern California, 

Department of Mathematics Colloquium. Los Angeles, CA. April 2010.

100. Todd Wittman, Contributed talk. 25 minutes. “Variational Methods in Hyperspectral Image Processing.” SIAM Conference on 

Analysis of Partial Differential Equations. Miami, FL. December 2009.

101. Y. S. Cho, G. Ver Steeg, and A. Galstyan “Co-Evolving Mixed-Membership Blockmodels”, NIPS Workshop on Networks Across 

Disciplines, 2010.

102. A. Allahverdyan, A. Galstyan, and G.V. Steeg, “Clustering with Prior Information,” NIPS Workshop: Clustering: Science or Art? 

Towards Principled Approaches, 2009.

103. A. Galstyan, “Modeling Covert Activities with Hidden Markov Processes,” SIAM CADS Mini-symposium on Terrorism Modeled as 

a Dynamical System, Snowbird, Utah, 2009 (invited).

104. A. Galstyan and P.R. Cohen, “ Comparing Diffusion Models for Graph-Based Semi-Supervised Learning,” 6th International 

Workshop on Mining and Learning with Graphs (MLG-08), Helsinki, Finland,

2008.

105. A. Galstyan and P.R. Cohen, “Influence Propagation in Modular Networks,” AAAI Symposium on Social Information Processing 

(SIP-08), Stanford, CA, 2008.

106. A. Galstyan, S. Mitra, and P.R. Cohen, “Probabilistic Tracking of Plans and Intentions in Intelligence Analysis”, talk presented at the 

WNAR/IMS Annual Meeting, UC Irvine, June 2007.

107. A. Galstyan, S. Mitra, and P.R. Cohen, “Detecting and Tracking Hostile Plans in the Hats World,” AAAI Workshop on Plan, Activity 

and Intent Recognition (PAIR–07), Vancouver, Canada, 2007.

108. A. Galstyan, S. Mitra, and P.R. Cohen, “Probabilistic Plan Tracking and Detection for Intelligence Analysis,” poster presented as the 

Joint Statistical Meetings (JSM), Salt Lake City, July 2007.

109. G. Medioni, Keynote lecture, Workshop on Perceptual Organization, San Francisco, CA, June 13, 2010.

110. G. Medioni, Keynote lecture, International Workshop on Computer Vision, Shenzhen Institute of Advanced Technology, Chinese 

Academy of Sciences, Shenzhen, China, July 14, 2010.

111. G. Medioni, Invited lecture, “Recent progress in object tracking (Multi target tracking, tag and track, active tracking, tracking in 

flow)”, INRIA, Rocquencourt, France, October 2009.

112. G. Medioni, Keynote speaker, Los Angeles/Anaheim, 2009 World Congress on Computer Science and Information Engineering, 

March 31, 2009.

113. G. Medioni, Keynote speaker, San Diego (Coronado), Automated Imaging, February 4, 2009.

114. G. Medioni, Keynote speaker, ISVC, Las Vegas, November 22, 2008.

115. G. Medioni, “Tensor Voting in 2 to N dimensions: Fundamental Elements,” Distinguished Lecture, Brown University, September 15, 

2008.

116. V.V. Veeravalli, “Sensor Control for Information Collection and Fusion.” International Workshop on Information Fusion, Xi’an, 

China, August 2011 (Plenary Lecture).

117. V.V. Veeravalli and T. Banerjee, “Quickest Change Detection with On-Off Observation Control.” International Workshop in 

Sequential Methodologies, Palo Alto, CA, June 2011 (Invited).

118. V.V. Veeravalli and J. Fuemmeler, “Energy-Efficient Multi-Target Tracking Using Sensor Networks.” Army Conference on Applied 

Statistics (ACAS), Lexington, VA, October 2008 (Invited).

119. V.V. Veeravalli, “System-Theoretic Foundations for Sensor Networks.” IEEE Communication Theory Workshop, Sedona, AZ, May 

2007 (Keynote Lecture).

120. V.V. Veeravalli, “System-Theoretic Foundations for Sensor Networks.” IWWAN, New York, NY, June 2006 (Keynote Lecture).

121. V.V. Veeravalli, “Smart Sleeping Policies for Wireless Sensor Networks.” NSF Workshop on Future Directions in Networked 

Sensing, Boston, MA, May 2006 (Invited).

Number of Presentations:  121.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

PaperReceived

TOTAL:



Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

PaperReceived

Steve DiBenedetto, Kaustubh Gadkari, Nicholas Diel, Andrea Steiner, Dan Massey, Christos Papadopoulos. 

Fingerprinting custom botnet protocol stacks, 2010 6th IEEE Workshop on Secure Network Protocols (NPSec). 

2010/10/04 03:00:00, Kyoto, Japan. : ,

2011/11/11 12:22:54 98

Genevieve Bartlett, John Heidemann, Christos Papadopoulos. Low-rate, flow-level periodicity detection, IEEE 

INFOCOM 2011 - IEEE Conference on Computer Communications Workshops. 2011/04/09 03:00:00, 

Shanghai, China. : ,

2011/11/11 12:20:29 97

Chris Wilcox, Christos Papadopoulos, John Heidemann. Correlating Spam Activity with IP Address 

Characteristics, IEEE INFOCOM 2010 - IEEE Conference on Computer Communications Workshops. 

2010/03/14 04:00:00, San Diego, CA, USA. : ,

2011/11/11 12:18:50 96

Genevieve Bartlett, John Heidemann, Christos Papadopoulos. Inherent Behaviors for On-line Detection of 

Peer-to-Peer File Sharing, 2007 IEEE Global Internet Symposium. 2007/05/10 03:00:00, Anchorage, AK, USA. 

: ,

2011/11/11 12:17:01 95

A. Hussain, J. Heidemann, C. Papadopoulos. Identification of Repeated Denial of Service Attacks, 

Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications. 

2006/04/22 03:00:00, Barcelona, Spain. : ,

2011/11/11 12:14:37 94

V.V. Veeravalli, J.A. Fuemmeler. Efficient Tracking in a Network of Sleepy Sensors, 2006 IEEE International 

Conference on Acoustics Speed and Signal Processing. 2006/07/24 03:00:00, Toulouse, France. : ,
2011/11/11 12:12:24 93

Jason A. Fuemmeler, Venugopal V. Veeravalli. Sensor scheduling for effective and energy efficient tracking in 

sensor networks, 2007 46th IEEE Conference on Decision and Control. 2007/12/11 03:00:00, New Orleans, 

LA, USA. : ,

2011/11/11 12:07:57 92

Vasanthan Raghavan, Venugopal V. Veeravalli. Bayesian quickest change process detection, 2009 IEEE 

International Symposium on Information Theory - ISIT. 2009/06/27 03:00:00, Seoul, South Korea. : ,
2011/11/11 12:06:41 91

Yuping Lin, Qian Yu, Gerard Medioni. Map-Enhanced UAV Image Sequence Registration, 2007 IEEE 

Workshop on Applications of Computer Vision (WAC V '07). 2007/02/20 03:00:00, Austin, TX, USA. : ,
2011/11/11 12:01:03 90

Qian Yu, Gerard Medioni. Map-Enhanced Detection and Tracking from a Moving Platform with Local and 

Global Data Association, 2007 IEEE Workshop on Motion and Video Computing (WMVC'07). 2007/02/22 

03:00:00, Austin, TX, USA. : ,

2011/11/11 11:59:39 89

Qian Yu, Gerard Medioni, Isaac Cohen. Multiple Target Tracking Using Spatio-Temporal Markov Chain Monte 

Carlo Data Association, 2007 IEEE Conference on Computer Vision and Pattern Recognition. 2007/06/16 

03:00:00, Minneapolis, MN, USA. : ,

2011/11/11 11:58:17 88

Qian Yu, Gerard Medioni. A GPU-based implementation of motion detection from a moving platform, 2008 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR 

Workshops). 2008/06/22 03:00:00, Anchorage, AK, USA. : ,

2011/11/11 11:56:32 87

Qian Yu, Gerard Medioni. Integrated Detection and Tracking for Multiple Moving Objects using Data-Driven 

MCMC Data Association, 2008 IEEE Workshop on Motion and video Computing (WMVC). 2008/01/07 

03:00:00, Copper Mountain, CO, USA. : ,

2011/11/11 11:55:08 86

Qian Yu, Thang Ba Dinh, Gerard Medioni. Online Tracking and Reacquisition Using Co-trainedGenerative and 

Discriminative Trackers, 10th European Conference on Computer Vision. 2008/01/01 03:00:00, . : ,
2011/11/11 11:53:27 85

Thang Dinh, Qian Yu, Gerard Medioni. Real time tracking using an active pan-tilt-zoom network camera, 2009 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009). 2009/10/09 03:00:00, St. 

Louis, MO, USA. : ,

2011/11/11 11:48:44 84



Qian Yu, G. Medioni. Motion pattern interpretation and detection for tracking moving vehicles in airborne video, 

2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR 

Workshops). 2009/06/19 03:00:00, Miami, FL. : ,

2011/11/11 11:47:06 83

Thang Ba Dinh, Gerard Medioni. Co-training framework of generative and discriminative trackers with partial 

occlusion handling, 2011 IEEE Workshop on Applications of Computer Vision (WACV). 2011/01/04 03:00:00, 

Kona, HI, USA. : ,

2011/11/11 11:45:05 82

Thang Ba Dinh, Nam Vo, Gerard Medioni. High resolution face sequences from a PTZ network camera, 

Gesture Recognition (FG 2011). 2011/03/20 03:00:00, Santa Barbara, CA, USA. : ,
2011/11/11 11:42:09 81

Thang Ba Dinh, Nam Vo, Gerard Medioni. Context tracker: Exploring supporters and distracters in 

unconstrained environments, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 

2011/06/19 03:00:00, Colorado Springs, CO, USA. : ,

2011/11/11 11:39:32 80

Aram Galstyan, Paul Cohen. Relational Classification Through Three¿State Epidemic Dynamics, 2006 9th 

International Conference on Information Fusion. 2006/07/09 03:00:00, Florence. : ,
2011/11/11 11:35:22 79

Armen Allahverdyan, Aram Galstyan. On maximum a posteriori estimation of hidden Markov processes, 

Twenty-Fifth Conference on Uncertainty in Artificial Intelligence . 2009/01/01 03:00:00, . : ,
2011/11/11 11:31:44 78

Andrea L. Bertozzi, Zhipu Jin. Environmental boundary tracking and estimation using multiple autonomous 

vehicles, 2007 46th IEEE Conference on Decision and Control. 2007/12/11 03:00:00, New Orleans, LA, USA. : 

,

2011/11/10 23:09:22 77

Wangyi Liu, Martin B. Short, Yasser E. Taima, Andrea L. Bertozzi. Multiscale Collaborative Searching Through 

Swarming, 7th International Conference on Informatics in Control, Automation, and Robotics. 2010/06/12 

03:00:00, . : ,

2011/11/10 23:06:16 76

Yao-Li Chuang, Yuan R. Huang, Maria R. D'Orsogna, Andrea L. Bertozzi. Multi-Vehicle Flocking: Scalability of 

Cooperative Control Algorithms using Pairwise Potentials, 2007 IEEE International Conference on Robotics 

and Automation. 2007/04/09 03:00:00, Rome, Italy. : ,

2011/11/10 23:03:05 75

Kevin K. Leung, Chung H. Hsieh, Yuan R. Huang, Abhijeet Joshi, Vlad Voroninski, Andrea L. Bertozzi. A 

second generation micro-vehicle testbed for cooperative control and sensing strategies, 2007 American 

Control Conference. 2007/07/08 03:00:00, New York, NY, USA. : ,

2011/11/10 23:01:19 74

Y. Landa, D. Galkowski, Y. R. Huang, A. Joshi, C. Lee, K. K. Leung, G. Malla, J. Treanor, V. Voroninski, A. L. 

Bertozzi, R. Tsai. Robotic path planning and visibility with limited sensor data, American Control Conference. 

2007/07/30 03:00:00, . : ,

2011/11/10 22:57:53 73

A. Joshi, T. Ashley, Y. Huang, A.L. Bertozzi. Experimental validation of cooperative environmental boundary 

tracking with on-board sensors, American Control Conference. 2009/06/01 03:00:00, . : ,
2011/11/10 22:54:00 72

J.H. von Brecht, S. Thiruvenadam, T.F. Chan. OCCLUSION TRACKING USING LOGIC MODELS, 9th IASTED 

Conference on Signal and Image Processing. 2007/01/01 03:00:00, . : ,
2011/11/10 22:50:33 71

M. Gonzalez, X. Huang, B. Irvine, D. S. Hermina Martinez, C. H. Hsieh, Y. R. Huang, M. B. Short, A. L. 

Bertozzi. A Third Generation Micro-vehicle Testbed for Cooperative Control and Sensing Strategies, 8th 

International Conference on Informatics in Control, Automation and Robotics (ICINCO). 2011/01/01 03:00:00, . 

: ,

2011/11/10 22:47:12 70

Alexander G. Tartakovsky, H. Kim. Performance of Certain Decentralized Distributed Change Detection 

Procedures, 9th International Conference on Information Fusion. 2006/07/10 03:00:00, . : ,
2011/11/10 22:41:35 69

Alexander G. Tartakovsky, Aleksey S. Polunchenko. Decentralized Quickest Change Detection in Distributed 

Sensor Systems with Applications to Information Assurance and Counter Terrorism, 13th Annual Army 

Conference on Applied Statistics. 2007/10/18 03:00:00, . : ,

2011/11/10 22:38:59 68

Moshe Pollak, Alexander G. Tartakovsky, Aleksey S. Polunchenko. Asymptotic Exponentiality of First Exit 

Timesfor Recurrent Markov Processes andApplications to Changepoint Detection, 2008 International 

Workshop on Applied Probability. 2008/07/07 03:00:00, . : ,

2011/11/10 22:26:51 67



Alexander G. Tartakovsky, Aleksey S. Polunchenko. Quickest Changepoint Detection in Distributed 

Multisensor Systems under Unknown Parameters, 11th International Conference on Information Fusion. 

2008/07/01 03:00:00, . : ,

2011/11/10 22:24:32 66

Alexander G. Tartakovsky, James Brown, Andrew Brown. Nonstationary EO/IR Clutter Suppression and Dim 

Object Tracking, 2010 Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference. 

2010/09/20 03:00:00, . : ,

2011/11/10 22:21:57 65

Georger V. Moustakides, Alexander G. Tartakovsky, Aleksey S. Polunchenko. Design and Comparison of 

Shiryaev-Roberts and CUSUM-TypeChange-Point Detection Procedures, The Second International Workshop 

on Sequential Methodologies . 2009/06/16 03:00:00, . : ,

2011/11/10 22:19:40 64

Nitis Mukhopadhyay, Alexander Tartakovsky, Aleksey Polunchenko. Nearly Optimal Change-Point Detection 

withAn Application to Cybersecurity, The Third International Workshopin Sequential Methodologies. 

2011/06/15 03:00:00, . : ,

2011/11/10 22:17:09 63

Moshe Pollak, Alexander G. Tartakovsky. Nearly Minimax Changepoint Detection Procedures, IEEE 

International Symposium on Information Theory. 2011/08/01 03:00:00, . : ,
2011/11/10 22:15:10 62

Alexander G. Tartakovsky, Moshe Pollak. Monotone Properties of the First Exit Time of a MarkovProcess 

Started at a Quasi-stationary Distribution, Markov and Semi-Markov Processes and Related Fields 2011. 

2011/09/20 03:00:00, . : ,

2011/11/10 22:13:36 61

Qian Yu, Gerard Medioni, Isaac Cohen. Multiple Target Tracking Using Spatio-Temporal Markov Chain Monte 

Carlo Data Association, 2007 IEEE Conference on Computer Vision and Pattern Recognition. 2007/06/16 

03:00:00, Minneapolis, MN, USA. : ,

2011/11/09 14:00:28 54

TOTAL:  39

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

PaperReceived

Moshe Pollak, Alexander G. Tartakovsky. On the first exit time of a nonnegative Markov process started at a 

quasistationary distribution, Journal of Applied Probability ( )

2011/11/10 18:00:13 7

Sergey V. Lototsky, Boris L. Rozovsky. Stochastic Parabolic Equations of Full Second Order,  ( )2011/11/09 13:54:53 33

Alexander G. Tartakovsky, Moshe Pollak, Aleksey S. Polunchenko. Third-order Asymptotic Optimality of the 

Generalized Shiryaev-Roberts Detection Procedures, Theory of Probability Applications ( )

2011/11/02 15:12:24 3

Georgios Fellouris, Alexander G. Tartakovsky. Nearly Minimax Mixture Rules for One-sided Sequential 

Testing, Sequential Analysis ( )

2011/11/02 15:06:59 2

TOTAL:  4

Books

Number of Manuscripts:

PaperReceived

Boris Rozovsky, Dan Crisan. the oxford handbook of nonlinear filtering, United Kingdom: Oxford University 

Place,  (01 2011)
2011/11/09 11:47:33 53

TOTAL:  1



Patents Submitted

1. G. Medioni and Q. Yu, USC File No:4048 “Spatio-Temporal Multiple Target Tracking Using Markov Chain Monte 

Carlo Data Association”.

2. G. Medioni and Q. Yu, USC File No:4109 “Online Tracking Using Co-trained Generative and Discriminative Trackers”.

3. G. Medioni and T. B. Dinh, USC File No:11-671, “Visual Tracking in Video Images in Unconstrained Environments by 

Exploiting On-The-Fly Context Using Distracters and Supporters”.

4. Provisional patent application filed by UCLA with US Patent Office titled “Data Fusion Mapping Estimation”.

Patents Awarded

Awards

1. T.B. Dinh, Travel Grant to participate in the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

Colorado Springs, Colorado, June 20-25, 2011.

2. T.B. Dinh, Travel Grant from NSF to participate n IEEE Conference on Automatic Face and Gesture Recognition (FG), 

Santa Barbara, California, March 21-25, 2011.

3. A.S. Polunchenko, Institute of Mathematical Statistics’ (IMS) Laha Travel Award, 2011.

4. Laura Smith, UCLA Dissertation Year Fellowship, 2011.

5. Nancy Rodriguez, National Science Foundation Postdoctoral Fellowship, 2011.

6. Andrea Bertozzi, Elected American Academy of Arts and Sciences, 2010.

7. Andrea Bertozzi, Elected SIAM Fellow, 2010.

8. Tony Chan, Elected SIAM Fellow, 2010.

9. V. Veeravalli was appointed IEEE Signal Processing Society Distinguished Lecturer for 2010-2011.

10. Andrea Bertozzi, Sonia Kovalevsky Prize Lecture, SIAM Annual Meeting, 2009.

11. P. Jeffrey Brantingham, (2009-Present) Los Angeles Police Department, Community Police Advisory Board on 

Counter-Terrorism, Appointed Board Member.

12. T.B. Dinh, 1st runner-up presentation award in scientific sessions of Annual Vietnam Education Foundation, Albany, 

NY, Jan 3-5, 2009.

13. Vlad Voroninsky, NSF Graduate Fellowship, 2008.

14. Tony Chan, Elected AAAS Fellow, 2007.

15. Alexander Tartakovsky, Abraham Wald Prize in Sequential Analysis, 2007.

Graduate Students



DisciplinePERCENT_SUPPORTEDNAME

Greg Sokolov  0.50

Thang Ba Dinh  0.25

Jan Prokaj  0.25

Yoon Sik Cho  0.50

Ming Ji  0.25

Alexander Chen  0.25

Nancy Rodriguez  0.25

Paul Jones  0.25

Matthew Keegan  0.25

Laura Smith  0.25

Erik Lewis  0.25

Rachel Hegemann  0.25

Wangyi Liu  0.25

Yasser Taima  0.25

Kevin Shen  0.25

David Hermina  0.25

James von Brecht  0.25

Jason Fuemmeler  0.50

Taposh Banerjee  0.25

Steven DiBenedetto  0.25

Kaustubh Gadkari  0.25

Mengran Hu  0.25

Zhang Han  0.25

Andrea Steiner  0.25

Andrew Papanicolaou  0.50

C.-Y. Lee  0.25

 7.50FTE Equivalent:

 26Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

J. Park  0.25

Greg Ver Steeg  0.50

Aleksey Polunchenko  0.50

Vasanthan Raghavan  0.10

Georgios Fellouris  0.10

Berta Sandberg  0.25

Virginia Pasour  0.25

Zhipu Jin  0.25

 2.20FTE Equivalent:

 8Total Number:

Names of Faculty Supported



National Academy MemberPERCENT_SUPPORTEDNAME

Boris Rozovsky  0.10

Aram Galstyan  0.25

Paul Cohen  0.10

Gerard Medioni  0.10

Alexander Tartakovsky  0.30

Andrea Bertozzi  0.10

Tony Chan  0.10

P. Jeffrey Brantingham  0.10

Venugopal Veeravalli  0.20

Christos Papadopoulos  0.10

 1.45FTE Equivalent:

 10Total Number:

Names of Under Graduate students supported

DisciplinePERCENT_SUPPORTEDNAME

Marina Masaki  0.25 Mathematics

Kym Louie  0.25 Mathematics

Mark Allenby  0.25 Mathematics

Mike Egesdal  0.25 Mathematics

Chris Fathauer  0.25 Mathematics

Jeremy Neumann  0.25 Mathematics

Benjamin Irvine  0.25 Mathematics

Max Gonzales  0.25 Mathematics

Edwin Huang  0.25 Mathematics

Abhijeet Joshi  0.25 Mathematics
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Roberts- and CUSUM-Type Change-Point Detection Procedures,” Proceedings of the 2nd Interna-
tional Workshop in Sequential Methodologies, University of Technology of Troyes, Troyes, France,
15 – 17 June 2009 (Invited).
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5. A.G. Tartakovsky, A.P. Brown, and J. Brown, “Enhanced Algorithms for EO/IR Electronic Stabiliza-
tion, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets,” The 10th
Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, Hawaii, September
2009.

6. A.G. Tartakovsky and A.S. Polunchenko, “Quickest Changepoint Detection in Distributed Multisen-
sor Systems under Unknown Parameters,” Proceedings of the 11th International Conference on Infor-
mation Fusion, Hyatt Regency Hotel, Cologne, Germany, 2008, pp. 878-885 (Invited).

7. A.G. Tartakovsky, M. Pollak, and A.S. Polunchenko, “Asymptotic Exponentiality of First Exit Times
for Recurrent Markov Processes and Applications to Changepoint Detection,” Proceedings of the 2008
International Workshop on Applied Probability, Compiègne, France, 7-10 July 2008 (Invited).

8. A.G. Tartakovsky and H. Kim, “Performance of Certain Decentralized Distributed Change Detection
Procedures,” Proceedings of the 9th International Conference on Information Fusion, Florence, Italy,
2006, CD ISBN 0-9721844-6-5, IEEE Catalog No. 06EX1311C (Invited).

9. A.G. Tartakovsky and A.S. Polunchenko, “Decentralized Quickest Change Detection in Distributed
Sensor Systems With Applications to Information Assurance and Counter Terrorism,” Proceedings of
the 13th Annual Army Conference on Applied Statistics, Rice University, Houston, TX, 17-19 October
2007 (Invited).

10. P.J. Brantingham and M.B. Short, “Crime Emergence,” In When Crime Appears: The Role of Emer-
gence, edited by J.M. McGloin, C. Sullivan and L.W. Kennedy. New York: Routledge (in press).

11. M. Gonzalez, X. Huang, B. Irvine, D. S. Hermina Martinez, C. H. Hsieh, Y. R. Huang, M. B. Short,
and A. L. Bertozzi, “A Third Generation Micro-vehicle Testbed for Cooperative Control and Sensing
Strategies,” Proceedings of the 8th International Conference on Informatics in Control, Automation
and Robotics (ICINCO), pp. 14-20, 2011.

12. Wangyi Liu, Martin B. Short, Yasser E. Taima, and Andrea L. Bertozzi, “Multiscale Collaborative
Searching Through Swarming,” Proceedings of the 7th International Conference on Informatics in
Control, Automation, and Robotics (ICINCO), Portugal, June 2010.

13. J.H. von Brecht, S. Thiruvenkadam and T.F. Chan, “Occlusion Tracking Using Logic Models,” 9th
IASTED Conf. on Signal and Image Processing, 2007.

14. A. Joshi, T. Ashley, Y. Huang, and A. L. Bertozzi, “Experimental validation of cooperative environ-
mental boundary tracking with on-board sensors,” American Control Conference, St. Louis, MO, June
2009, pp. 2630-2635.

15. Z. Jin and A. L. Bertozzi, “Environmental Boundary Tracking and Estimation using Multiple Au-
tonomous Vehicles,” Proceedings of the 46th IEEE Conference on Decision and Control, New Or-
leans, LA, 2007, pp. 4918-4923.

16. Y. Landa, D. Galkowski, Y. R. Huang, A. Joshi, C. Lee, K. K. Leung, G. Malla, J. Treanor, V. Voronin-
ski, A. L. Bertozzi, and R. Tsai, “Robotic path planning and visibility with limited sensor data,”
Proceedings of the 2007 American Control Conference.

17. Kevin K. Leung, Chung H. Hsieh, Yuan R. Huang, Abhijeet Joshi, Vlad Voroninski, and Andrea L.
Bertozzi, “A second generation micro-vehicle testbed for cooperative control and sensing strategies,”
Proceedings of the 2007 American Control Conference, pp. 1900-1907.

18. Y.-L. Chuang, Y. R. Huang, M. R. D’Orsogna, and A. L. Bertozzi, “Multi-vehicle flocking: scala-
bility of cooperative control algorithms using pairwise potentials,” IEEE International Conference on
Robotics and Automation, 2007, pp. 2292-2299.

19. A. Allahverdyan and A. Galstyan, “Comparative Analysis of Viterbi Training and ML Estimation for
HMMs,” In Neural Information Processing Systems (NIPS), 2011.

20. Y.S.Cho, G. Ver Steeg, and A. Galstyan, “Co-evolution of Selection and Influence in Social Net-
works,” In Proc. of the Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), 2011.

21. A. Allahverdyan and A. Galstyan, “On Maximum a Posteriori Estimation of Hidden Markov Pro-
cesses,” In Proc. of the 25th Conference on Uncertainty in Artificial Intelligence (UAI-09), Montreal,
Canada, 2009.
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22. A. Galstyan and P.R. Cohen, “Relational Classification Through Three-State Epidemic Dynamics,” In
Proceedings of the 9th International Conference on Information Fusion (FUSION’06), special session
on Making Histories, Florence, Italy, 2006.

23. A. Galstyan and P.R. Cohen, “Empirical Comparison of “Hard” and “Soft” Label Propagation for
Relational Classification,” In Proceedings of the International Conference on Inductive Logic Pro-
gramming (ILP–07), Corvallis, OR, 2007.

24. T. B. Dinh, N. Vo, and G. Medioni, “Context Tracker: Exploring Supporters and Distracters in Un-
constrained Environments,”IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Colorado Springs CO, Jun 20-25 2011.

25. T. B. Dinh, N. Vo, and G. Medioni, “High Resolution Face Sequences from a PTZ Network Cam-
era,”IEEE Conference on Automatic Face and Gesture Recognition (FG), Santa Barbara CA, Mar
21-25 2011.

26. T. B. Dinh and G. Medioni, “Co-training Framework of Generative and Discriminative Trackers
with Partial Occlusion Handling,”IEEE Workshop on Motion and Video Computing (WMVC), Kona
Hawaii, Jan 5-7 2011.

27. Q. Yu and G. Medioni, “Motion Pattern Interpretation and Detection for Tracking Moving Vehicles
in Airborne Videos,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami
FL, Jun 20-25 2009.

28. T. Dinh, Q. Yu, and G. Medioni, “Real Time Tracking Using an Active Pan-Tilt-Zoom Network
Camera,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis
MO, Oct 11-15 2009.

29. Q. Yu, T. Dinh, and G. Medioni, “Online Tracking and Reacquisition Using Co-trained Generative
and Discriminative Trackers,” European Conference on Computer Vision (ECCV), Marseille, France,
Oct 12-18, 2008.

30. Q. Yu, G. Medioni, “Integrated Detection and Tracking for Multiple Moving Objects using Data-
Driven MCMC Data Association,”IEEE Workshop on Motion and Video Computing (WMVC), Copper
Mountain, CO, Jan 08-09 2008.

31. Q. Yu, G. Medioni. “A GPU-based implementation of Motion Detection from a Moving Platform,”IEEE
Workshop on Computer Vision on GPU (CVGPU), Anchorage AK, Jun 23-28 2008.

32. Q. Yu, G. Medioni, and I. Cohen, “Multiple Target Tracking Using Spatio-Temporal Monte Carlo
Markov Chain Data Association,” IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR) , Minneapolis MN, Jun 18-23 2007.

33. Q. Yu and G. Medioni, “Map-Enhanced Detection and Tracking from a Moving Platform with Local
and Global Data Association,” IEEE Workshop on Motion and Video Computing (WMVC), pp. 3-10,
Austin TX, Feb 23-24 2007.

34. Y. Lin, Q. Yu, and G. Medioni, “Map-Enhanced UAV Image Sequence Registration,” IEEE Workshop
on Applications of Computer Vision (WACV), pp.15-20, Austin TX, Feb 23-24 2007.

35. T. Banerjee and V.V. Veeravalli, “Bayesian Quickest Change Detection Under Energy Constraints,” In
Proc. ITA workshop, UCSD, San Diego, CA, February 2011 (Invited).

36. G. Atia and V.V. Veeravalli, “Sensor management for energy-efficient tracking in cluttered environ-
ments,” In Proc. ITA workshop, UCSD, San Diego, CA, February 2011 (Invited).

37. G.K. Atia, V.V. Veeravalli and J.A. Fuemmeler, “Sensor scheduling for energy-efficient target tracking
in sensor networks,” In Proc. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, November 2010.

38. K. Premkumar, A. Kumar and V.V. Veeravalli, “Bayesian Quickest Transient Change Detection,” In
Proc. International Workshop on Applied Probability, Madrid, Spain, July 2010 (Invited).

39. V. Ragahavan and V.V. Veeravalli, “Bayesian quickest change process detection,” In Proc. IEEE ISIT,
Seoul, South Korea, August 2009.
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40. V. Raghavan and V.V. Veeravalli, “Quickest Detection of a Change Process Across a Sensor Array,”
In Proc. IEEE Fusion, Cologne, Germany, July 2008 (Invited).

41. J. Fuemmeler and V.V. Veeravalli, “Sensor Scheduling for Effective and Energy Efficient Tracking in
Sensor Networks,” In Proc. IEEE CDC, New Orleans, LA, December 2007 (Invited).

42. V.V. Veeravalli and J. Fuemmeler, “Joint Optimization of Smart Sleeping and Cooperative Local-
ization Strategies for Energy-Efficient Tracking in Sensor Networks,” In Proc. 56th Session of the
International Statistical Institute (ISI), Lisbon, Portugal, August 2007 (Invited).

43. J. Fuemmeler and V.V. Veeravalli, “Smart Sleeping Strategies for Localization and Tracking in Sensor
Networks,” In Proc. 40th Asilomar Conference on Signals, Systems, and Computers, Monterey, CA,
November 2006 (Invited).

44. V.V. Veeravalli and J. Fuemmeler, “Efficient Tracking in a Network of Sleepy Sensors,” In Proc. IEEE
ICASSP, Toulouse, France, May 2006 (Invited).

45. G. Bartlett, J. Heidemann, and C. Papadopoulos, “Understanding Passive and Active Service Dis-
covery,” In Proceedings of the ACM Internet Measurement Conference, San Diego, California, USA,
October, 2007.

46. A. Hussain, J. Heidemann, and C. Papadopoulos, “Identification of Repeated Denial of Service At-
tacks,” In Proceedings of the IEEE Infocom, Barcelona, Spain, April, 2006.

47. G. Bartlett, J. Heidemann, and C. Papadopoulos, “Inherent Behaviors for On-line Detection of Peer-
to-Peer File Sharing,” In Proceedings of the 10th IEEE Global Internet, Anchorage, Alaska, USA,
May 2007.

48. J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, and J. Bannister, “Census and
Survey of the Visible Internet,” In Proceedings of the ACM Internet Measurement Conference, p.
169-182. Vouliagmeni, Greece, October 2008.

49. C. Wilcox, C. Papadopoulos, and J. Heidemann, “Correlating Spam Activity with IP Address Char-
acteristics”, In Proceedings of the IEEE Global Internet Symposium, San Diego, California, USA,
March 2010.

50. G. Bartlett, J. Heidemann, and C. Papadopoulos, “Low-Rate, Flow-Level Periodicity Detection,” In
Proceedings of the 14th IEEE Global Internet Symposium, Shanghai, China, April 2011.

51. S. DiBenedetto, K. Gadkari, N. Diel, A. Steiner, D. Massey, and C. Papadopoulos, “Fingerprint-
ing Custom Botnet Protocol Stacks,” Proceedings of the 6th Workshop on Secure Network Protocols
(NPSec), Japan, Kyoto, October 2010.

(e) Papers presented at meetings, but not published in conference proceedings:
1. A.G. Tartakovsky, “Spatiotemporal Image Processing with Applications to Remote Sensing,” Depart-

ment of Statistics and Department of Computer Sciences, University of Chicago, September, 2011
(Invited).

2. A.G. Tartakovsky, “Sequential Changepoint Detection: State of the Art,” Department of Statistics,
University of Illinois at Urbana-Champaign, October, 2011 (Invited).

3. A.G. Tartakovsky, “Spatiotemporal Image Processing with Applications to Remote Sensing,” Depart-
ment of Electrical and Computer Engineering and Coordinated Science Lab, University of Illinois at
Urbana-Champaign, October, 2011 (Invited).

4. A.S. Polunchenko, A.G. Tartakovsky, and N. Mukhopadhyay, “Nearly Optimal Change-Point Detec-
tion with An Application to Cybersecurity,” The 3rd International Workshop in Sequential Method-
ologies, Stanford University, 14–16 June 2011.

5. A.G. Tartakovsky and A.S. Polunchenko, “Optimality of the Shiryaev–Roberts Procedure for Detect-
ing Changes in Distributions,” The 73rd Annual Meeting of the Institute of Mathematical Statistics,
Gothenburg, Sweden, 9–13 August 2010.

6. A.P. Brown and A.G. Tartakovsky, “Spatiotemporal Clutter Rejection and Track-Before-Detect Meth-
ods for Tracking Small Dim Objects,” 32nd Review of Atmospheric Transmission Models Meeting,
Lexington, Massachusetts, 14-15 June 2010 (Invited).
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7. A.G. Tartakovsky, “Spatial-Temporal Image Processing Techniques and Applications to Remote Sens-
ing,” Department of Mathematics, Stanford University, 2009 (Invited).

8. A.G. Tartakovsky, “Quickest Changepoint Detection: Recent Advances and Open Problems,” NSF
Sponsored Workshop in Honor of Professor A.V. Balakrishnan, January 30, 2009 (Invited).

9. A.G. Tartakovsky, “Efficient Numerical Methods for Optimization and Performance Evaluation of
Changepoint Detection Procedures,” Department of Probability, Moscow State University, Moscow,
Russia, March 25, 2009 (Invited).

10. A.G. Tartakovsky, “Adaptive Spatial-Temporal Image Processing Techniques and Applications to
Clutter Rejection in Remote Sensing,” Workshop “Spatiotemporal Image Processing and Visual Surveil-
lance”, University of Southern California, 2008 (Invited).

11. A.G. Tartakovsky, “Exact Optimality of the Shiryaev–Roberts Procedure for Detecting Changes in
Distributions,” Department of Mathematical Sciences, University of Technology, Sydney, Australia,
November 27, 2008 (Invited).

12. A.G. Tartakovsky, “Detection and Classification in Distributed Multisensor Systems with Applica-
tions to Network Security,” Workshop “Sensor Networks and Future Internet Security”, University of
Southern California, May 23, 2007 (Invited).

13. A.G. Tartakovsky, “Asymptotic Optimality in Sequential Quickest Change-Point Detection: Theory
and Applications,” Princeton, September 25, 2007 (Invited).

14. A.G. Tartakovsky, “Quickest Change-Point Detection: Previous Achievements and Open Problems,”
First International Workshop on Sequential Methodologies, Auburn, AL, 22-25 July 2007 (Invited).

15. A.G. Tartakovsky, “Asymptotic Optimality in Sequential Hypothesis Testing and Quickest Change-
Point Detection for General Continuous-Time Stochastic Processes,” Workshop on Inverse Problems
in Stochastic Differential Equations, University of Southern California, Los Angeles, CA, 22-26 May,
2007 (Invited).

16. A.G. Tartakovsky, “An Asymptotically Optimal Change Detection Strategy Under Nontraditional
Global False Alarm Probability Constraint,” The 2007 Taipei International Statistical Symposium and
ICSA International Conference (Session: Change-Point Analysis and Applications), Taipei, Taiwan,
24-28 June, 2007 (Invited).

17. V.V. Veeravalli and A.G. Tartakovsky, “Quickest Change Detection in Sensor Networks,” First Inter-
national Workshop on Sequential Methodologies, Auburn, AL, July 2007 (Invited).

18. B.L. Rozovsky, “Generalized Malliavin calculus and Stochastic PDEs,” Columbia University, Min-
erva Foundation Lectures, December 2010.

19. B.L. Rozovsky, “Stochastic Fluid Dynamics,” NSF Institute for Pure and Applied Mathematics, In-
vited lecture, January 2011.

20. B.L. Rozovsky, “Stochastic Fluids and Malliavin Calculus,” Conference on Malliavin Calculus and
Stochastic Analysis, University of Kansas, Invited talk, March 2011.

21. B.L. Rozovsky, “On Unbiased Stochastic Navier-Stokes Equation,” Workshop on SPDEs, Archimedes
Center for Modeling, Analysis, and Computations, Heraklion, Greece, Invited lecture, June 2011.

22. B.L. Rozovsky, “Recent Advances in Nonlinear Filtering,” Imperial College, London. Invited lecture,
June 2011.

23. B.L. Rozovsky, “Stochastic Fluid Dynamics and Malliavin Calculus,” Oxford University, Invited lec-
ture, 2011.

24. B.L. Rozovsky, “Uncertainty Quantification and Nonlinear Filtering,” ICIAM 2011, Vancouver, Canada,
2011.

25. B.L. Rozovsky, “On Unbiased Stochastic Navier-Stokes Equation,” ICIAM 2011, Vancouver, Canada,
2011.

26. B.L. Rozovskii, Invited Talk, SIAM conference on Computational Science and Engineering, Maiami,
2009.

27. B.L. Rozovskii, Invited Talk, 7th ISAAC Congress, London, 2009.
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28. B.L. Rozovskii, Invited Talk, International Conference on Spectral and High Order Methods, 2009,
Trondheim, Norway.

29. Alethea Barbaro, Agent-based Complex Systems Workshop at IPAM: Organized and spoke October
14, 2009 1 hour, Title: ”Agent-based modeling for animal migration and gang behavior”.

30. Alethea Barbaro, American Soc. Criminology Meeting Philadelphia, joint presentation with Shannon
Reid, Nov. 6, 2009, ”Agent-based simulations: modeling gang violence in Hollenbeck”

31. Alethea Barbaro, UCSB Hypatian Seminar, Nov 30, 2010, ”Agent-based modeling of complex sys-
tems, and how to claim your mathematical territory after your doctorate”

32. Alethea Barbaro, IPAM’s Optimal Transport Reunion Workshop at Lake Arrowhead (invited talk)
December 10, 2009, 20 minutes, Title: ”On limits of a discrete time interacting particle system”

33. Alethea Barbaro, 2nd Annual Southern California Women in Math Symposium February 20, 2010,
30 minutes, Title: ”Agent-based models of social dynamics”.

34. Alethea Barbaro, 2010 Mathematics Festival at UCLA (2 sessions) February 13, 2010, Two sessions,
each 50 minutes Title: ”Modeling the Real World: Using Math to Study Migration, Territoriality, and
Social Networks”.

35. Alethea Barbaro, Invited Talk at USC for the Women in Math Seminar, March 12, 2010, 1 hour, Title:
”Simulating social dynamics with interacting particle models”.

36. Alethea Barbaro, Invited Seminar Talk at Redlands, March 31, 2010, 1 hour, Title: ”Simulating Social
Dynamics with Interacting Particle Models”.

37. Alethea Barbaro, Talk at SIAM’s DSPDEs conference in Barcelona, Spain (Organized Mini-symposium
and spoke), Mini-symposium title: Particle and mean field models for flocking and swarming, co-
chair Massimo Fornasier, June 1, 2010, 30 minutes, Talk Title: ”Interacting particle models for Social
Dynamics”.

38. Alethea Barbaro, Workshop: Modeling Complex Dynamics in Biological Systems, Universite Paul
Sabatier, Toulouse, France (invited talk) June 9, 2010 1 hour Title: ”Interacting particle models for
animal social dynamics”.

39. Alethea Barbaro, Workshop: Mathematics of Complex Systems, Universite Paul Sabatier, Toulouse,
France (invited talk) June 10, 2010, 45 minutes, Title: ”Agent-based models for gang dynamics”.

40. Alethea Barbaro, Kinetic and Mean-field models in the Socio-Economic Sciences: workshop at
ICMS, Edinburgh, Scotland (25 minute invited talk), July 31, 2009, Title: ”Fish migration, interacting
particles, and scaling laws”.

41. Andrea Bertozzi, Women in Mathematics Seminar, Univ. of Wisconsin, Madison, WI, October 7,
2009.

42. Andrea Bertozzi, Invited talk and co-organizer, IPAM workshop on ”Agent Based Complex Systems”,
October 14, 2009.

43. Andrea Bertozzi, Invited address, Southern California-Nevada MAA Section Meeting, October 17,
2009.

44. Andrea Bertozzi, Invited talk, Workshop on Self-Organization and Multi-Scale Mathematical Model-
ing of Active Biological Systems, Statistical and Applied Mathematical Sciences Institute, Durham,
NC, October 27 2009.

45. Andrea Bertozzi, Invited talk, Army Research Office, Durham, NC October 28, 2009.
46. Andrea Bertozzi, Invited talk UBC Vancouver, PIMS mini-symposium in PDE, one hour talk, Novem-

ber 13, 2009.
47. Andrea Bertozzi, Invited talk on “A Variational Approach to Hyperspectral Image Fusion”, Minisym-

posium on Variational Methods in Image Processing and Interface Problems, Maria Westdickenberg
and Sung Ha Kang, Organizers, SIAM Conference on Analysis of Partial Differential Equations, Mi-
ami, December 7, 2009.
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48. Andrea Bertozzi, Invited talk on ”Mathematical Models for Urban Crime” Minisymposium on “Non-
linear Stochastic PDEs and Applicationss to Complex Systems”, Hakima Bessaih and Bjorn Birnir,
Organizers, SIAM Conference on Analaysis of Partial Differential Equations, Miami, December 8,
2009.

49. Andrea Bertozzi, Invited talk in SIAM Minisymposium on New Trends in Mathematical Methods in
Imaging Science, Rick Chartrand, Stacey Levine, Jennifer Mueller, and Luminita Vese organizers,
Joint Math Meetings, San Francisco, Sat Jan 16, 2010

50. Andrea Bertozzi, Invited talk, China Lake Distinguished Speakers Colloquium Series, China Lake
Naval Air Warfare Center, Ridgecrest, CA, Feb 2, 2010

51. Andrea Bertozzi, Invited talk Rand Corp. Santa Monica, Feb 11, 2010
52. Andrea Bertozzi, Invited talk, Session on ”Traffic, Crowds and Society”, AAAS Annual Meeting, San

Diego, February 20, 2010
53. Andrea Bertozzi, Invited talk, Imperial College London, Institute for Mathematical Sciences, invited

talk in three part session on Geometric Mechanics, Darryl Holm host, March 8, 2010
54. Andrea Bertozz,i Fluid Mechanics Seminar, DAMTP, Univ. of Cambridge, UK, March 5, 2010
55. Andrea Bertozzi, Brown University, Mathematics Department, Distinguished Lecture Series, three

one hour lectures, March 11-12, 2010
56. Andrea Bertozzi, Brown University, Mathematics Department, faculty speaker, Symposium for Un-

dergraduates in the Mathematical Sciences, 45 minute talk, March 13, 2010
57. Andrea Bertozzi, Invited talk, Minisymposium on Advanced Frameworks for Restructuring High Di-

mensional Datasets, SIAM Conf. on Imaging Science, Chicago, IL April 13, 2010, Edward H. Bosch
Organizer.

58. Andrea Bertozzi,Invited talk, Plenary talk, Joint SIAM/RSME-SCM-SEMA Meeting on Emerging
Topics in Dynamical Systems and Partial Differential Equations DSPDEs’10 June 1, 2010, Barcelona,
Spain

59. Andrea Bertozzi, Invited talk 2010 DTRA/NSF Algorithm workshop, talk on “Undergraduate Re-
search Training in Defense Applications”, June 22, 2010, Chapel Hill, NC

60. Andrea Bertozzi, Invited talk 2010 DTRA/NSF Algorithm workshop, talk on “Imaging of multispec-
tral and hyperspectral data”, June 23, 2010, Chapel Hill, NC

61. Andrea Bertozzi, invited talk talk in workshop Fluid Dynamics Analysis and Numerics, a conference
in honor of Tom Beale’s 60th Birthday, Duke Univ., Durham, NC June 28, 2010

62. Andrea Bertozzi, invited talk at Park City Mathematics Institute, Program on Imaging Sciences, Park
City UT, July 5, 2010

63. Andrea Bertozzi, Graduate School of Engineering and Applied Sciences, Distinguished Lecture,
Naval Postgraduate School, Sept. 2, 2010.

64. Andrea Bertozzi, London Taught Course Centre 8 hour intensive course on Mathematics of Crime,
Univ. College London, Sept. 9-10, 2010.

65. Andrea Bertozzi, Department of Applied Mathematics and Statistics Johns Hopkins University, Col-
loquium Sept. 16, 2010.

66. Andrea Bertozzi, Allman Family Public Lecture, Southern Methodist University, Mathematics in the
Real World, Sept. 23, 2010.

67. Andrea Bertozzi, Invited talk, IPAM workshop on Machine Reasoning: Mission Focused Actions/Reactions
Based on System Integration of Information Derived from Complex Real-World Data, Oct 19, 2010.

68. Andrea Bertozzi, Distinguished Lecture, Department of Mathematics, Simon Fraser Univ., Oct. 29,
2010.

69. Andrea Bertozzi, Invited talk, 9th Annual Image Fusion Workshop, Institute for Defense and Govern-
ment Advancement, Tyson’s Corner, VA, November 16, 2010.

70. Andrea Bertozzi, Invited talk, RCIM Symposium Mathematical Aspects of Image Processing and
Computer Vision 2010 Sapporo, Japan, November 26, 2010.
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71. Andrea Bertozzi, Invited talk, NSF workshop on New Directions in Dynamical Systems Inspired by
Biological, Energy, Environmental, and Information Sciences, Atlanta, GA, Jan 4, 2011

72. Andrea Bertozzi, Invited talk, Dynamics Days, Chapel Hill, NC, Jan 5, 2011
73. Andrea Bertozzi, AMS Invited Address, Joint Mathematics Meetings, New Orleans, LA, Jan 7, 2011
74. Andrea Bertozzi, Invited Talk (one hour), 2011 annual meeting of the Australian and New Zealand

Industrial and Applied Mathematics division of the Australian Mathemtaical Society. ANZIAM 2011
in Glenelg, Australia, Feb. 1, 2011

75. Andrea Bertozzi, PIMS Applied Mathematics Seminar, University of Saskatchewan, Saskatoon, March
14, 2011

76. Andrea Bertozzi, Seminar, Ecole Normal Superieur de Cachan, Centre de Mathematiques et de leurs
Applications, March 17, 2011

77. Andrea Bertozzi, Groupe de travail - Mathematiques de la decision, Seminar, Univ. of Toulouse,
March 24, 2011

78. Andrea Bertozzi, Colloquium de L’Institut de Mathematiques de Toulouse, March 25, 2011
79. Andrea Bertozzi, Mathematics Colloquium Univ. of Warwick, UK, June 3, 2011, ”Mathematics of

Crime”
80. Andrea Bertozzi, Nonlinear Diffusion: Applications, Analysis and Computation conference to cele-

brate the 60th Birthday of Charlie Elliot, Univ. Warwick, June 6-8, 2011, invited 45 minute talk.
81. Andrea Bertozzi, 7th East Asian SIAM meeting Waseda University Kitakyushu Campus, Japan Keynote

Talk, June 29, 2011
82. Andrea Bertozzi, Invited talk, Minisymposium on Modern Methods and Applications of the Calculus

of Variations: Image Processing , July 20, 2011, International Congress on Industrial and Applied
Mathematics, Vancouver BC

83. Andrea Bertozzi, Invited talk, Duke Workshop on Sensing and Analysis of High-Dimensional Data
(SAHD), July 26, 2011

84. Andrea Bertozzi, Plenary talk, AWM 40th Anniversary Conference, ICERM, Brown University,
September 18, 2011

85. Andrea Bertozzi, Applied Mathematics Seminar, Mathematics of Crime, Harvard University, Septem-
ber 19, 2011

86. Andrea Bertozzi, Widely Applied Mathematics Seminar, Swarming by Nature and by Design, Harvard
University, September 20, 2011

87. P. Jeffrey Brantingham, Repeats and Reprisals: The Dynamics of Burglary and Rival Gang Violence
in Los Angeles. Invited lecture at the Workshop on Modeling and Analysis of Security, January 4 7,
2010, University of Chile, 2010.

88. P. Jeffrey Brantingham, “Agent-based and continuum models of crime pattern formation,” Invited lec-
ture presented at the Agent-based Complex Systems workshop, Institute of Pure and Applied Mathe-
matics, UCLA, October 12-14, 2009.

89. P. Jeffrey Brantingham, “Why seeking to reduce gang rivalries might increase gang violence,” UC
Irvine Criminology, Law and Society, April 13, 2011.

90. P. Jeffrey Brantingham, “The Mathematical Ecology of Criminal Street Gangs,” UCLA Marschak
Colloquium, April 8, 2011.

91. P. Jeffrey Brantingham, Stochastic Models of Crime with Practical Implications for Policing. Work-
shop on Geospatial Abduction Problems, University of Maryland, March 3-4, 2011.

92. P. Jeffrey Brantingham, “University-Agency Collaboration in Predictive Policing,” 10th Anniversary
Celebration of the Institute for Canadian Urban Research, Simon Fraser University, February 3, 2011.

93. Maria D’Orsogna, invited talk, Kinetic and mean-field models in the socio-economic sciences, Edin-
burgh, Scotland, July 2009
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94. Erik Lewis, poster presentation at the Agent-Based Complex Systems workshop at IPAM, October
12-14, 2009. “Comparing Gang Rivalries and Civilian Deaths in Iraq Using Self-Exciting Point Pro-
cesses.”

95. George Mohler, “Agent-based, Bayesian Geographic Profiling” Workshop on Analysis and Modeling
of Security,” Jan 4-7, 2010, Santiago Chile, 40 minute talk.
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Nonlinear Analysis Summer School on Image Processing and PDEs. Pittsburgh, PA. June 2010.
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ing,” 6th International Workshop on Mining and Learning with Graphs (MLG-08), Helsinki, Finland,
2008.
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Chapter 2

Efficient Spatiotemporal Nonlinear
Filtering Methods for Recognition and
Tracking of Patterns and Trends

The work presented in this chapter has been performed by Dr. Rozovsky’s group in Brown University in
collaboration with Dr. Lototsky (USC), Dr. Mikulevicius (USC), Dr. Tartakovsky (USC), and Dr. Wan
(Princeton).

1. Introduction

Until recently applications of nonlinear filtering (NLF) for hidden Markov models (HMM) have focused
mostly on state processes of small to medium complexity insufficient for many applications of interest for
DOD and the U.S. Army, in particular. One of the objectives of the research supported by this Grant is
developing of spatiotemporal NLF algorithms and their DOD relevant applications.

The main scientific barrier in spatiotemporal filtering is enormous computational complexity. The funda-
mental challenge of our research is in finding effective models of spatiotemporal systems and the algorithms
that would allow real time processing of these models.

Two different types of spatial structure appears in applications of interest for this research: video-streams
(in video surveillance) and graphs (in information assurance (IA)). Some progress has already been made
in application of NLF to analysis of video streams. However, the IA applications of NLF are quite novel.
In video tracking, the spatial components are images characterized by shapes, curves, etc. In IA, the spatial
components are graphs depicting relations between IP addresses and port numbers. Other variables, such
as source address, source port, protocol, etc. also could be included. Source address and port, however, are
typically spoofed in attacks (this corresponds to occlusions and distortions in the image analysis).

One of the main objectives of this project is development of Spatiotemporal NLF algorithms and their
DOD relevant applications. The most promising developments in tracking of distributed images were made
in [25]. There were interesting developments in quantum MCMC for tracking very large systems (see [140]
and references therein); Zakai and Kushner equations for comparatively simple linear spatiotemporal state
processes were derived in [3]. Nevertheless, the field is yet in its infancy.

2. Spatiotemporal Nonlinear Filtering for Recognition and Tracking of Patterns and Trends

2.1. A Bayesian Approach to Recognition of Patterns and Trends

In this project, we have farther developed a probabilistic Bayesian framework imbedded into dynamical
distributed systems, more specifically, a nonlinear filtering approach for the analysis of heterogeneous spa-
tiotemporal data. A distinctive advantage of NLF formalism is that it generates optimal tracking strategies.
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The NLF approach turned out to be very instrumental in tracking point targets with highly nonlinear dynam-
ics and observation structure. The extension of NLF to a spatiotemporal system attempted in the present
research provides an algorithmic support for developing of multi-target multi-sensor trackers. Such trackers
will be capable of dealing with a large number of extended targets with unknown shapes that are monitored
by a network of stationary or moving sensors in complicated scenarios characteristic of urban warfare and
counter-terrorism.

The analysis and synthesis of high-volume data and, in particular, spatiotemporal data is addressed
by different disciplines and from different perspectives. Our approach is probabilistic in nature: more
specifically, it is Bayesian. One important feature of the Bayesian approach is that it interprets the data not
as a self-contained information depository but in light of already available knowledge (e.g., human expertise)
regarding the events reflected by the data. This feature is an ideal instrument for keeping human operators
“in the loop” in the process of automated decision making.

Nonlinear filtering is an extension of the Bayesian framework into dynamical systems. Kalman filter,
designed for linear dynamical systems and linearly structured observations, is probably the most famous
Bayesian filter. Generalizations of Kalman filter to nonlinear systems and/or observations are usually re-
ferred to as nonlinear filtering. NLF is a field on the cutting edge of contemporary stochastic analysis,
information theory, and statistical inference. This is an emerging methodology with an enormous breadth of
applications.

To be more specific, one could consider the following simple model, with two sequences (xt)t≥0 and
(yt)t≥0 , called state and observations, respectively. Often, the state is modeled as a Markov chain with the
transition probability kernel Qt (x, y) and the initial distribution π0. The observation sequence is related to
the state by

yt = Ht (xt) + vt,

where vt is noise (not necessarily Gaussian). The a priori information contained in this model consists of
π0, Qt, and gt,where gt (v) is the PDF of noise vt. This model is often referred to as a hidden Markov model
(HMM) because the Markov chain xt is hidden from the observer by a possibly nonlinear transformation
Ht and noise vt. The goal of nonlinear filtering is to compute at each time t the posterior distribution πt|t of
the state xt given the realization of the observation y0|t = (y0, . . . ,yt).

In the discrete time setting, the algorithm of the nonlinear filtering is very simple. It consists of two
steps: {

prediction : πt|t−1 (x) =
∫
Q∗t (x′, x)πt−1|t−1 (x′) dx′

correction : πt|t (x) = Ψt (x)πt|t−1 (x) /
∫

Ψt (x)πt|t−1 (x) dx,
(2.1)

where Ψt (x) = gt (yt−H(x)) is the likelihood function. The second step is simply the Bayes formula.
The posterior distribution is the centerpiece of the Bayesian estimation. Indeed, the nonlinear filter

x̂t =
∫
xπt|t (x) dx is an optimal (in the mean-square) estimator for the state process xt. Also, the posterior

distribution is extremely valuable for the “visualization” of pattern changes (see Figure 2.1).
Figure 2.1 shows propagation of the posterior distribution of the position of an acutely maneuvering

small and low SNR target (the signal-to-noise ratio (SNR) is −7dB). The spatio-temporal (S-T) input is IR
video-stream. The brighter colors correspond to the higher values of the posterior distribution, and the green
line is the true trajectory.

In the continuous time case, the prediction and correction steps merge and the posterior distribution
πt(x) = πt|t (x) is given by πt (x) = φt (x) /

∫
φt (x′) dx′ and φt (x) is a solution of the stochastic

differential equation
φ̇t (x) = A∗ (t, x)φt (x) +Ht(x)v̇t, φ0 (x) = π0 (x) , (2.2)

where A is the generator of the transition probability kernel Qt (x, y) and v̇t is white noise. For example,
if the state process is given by the noisy kinematic equation ẋt = a (t, xt) + σε̇t, where ε̇t is white noise
independent of v̇t,

φ̇t (x) =
σ2

2
φ′′t (x)− (a (t, x)φt (x))′ +Ht(x)φt (x) v̇t. (2.3)
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(a) Target acquired (b) Stable tracking

(c) Change of pattern/turn

Figure 2.1: Propagation of the posterior distribution.

Note that equation (2.3) is a stochastic partial differential equation and should be understood in the sense of
Itô calculus. Equation (2.2) is usually referred to as the Duncan-Mortensen-Zakai equation and its solution
φt (x) as the unnormalized filtering density (UFD). The posterior density πt (x) solves a Kushner equation
that is similar to the Zakai but slightly more complicated. The theory of nonlinear filtering was initiated in
the 1960s (see, e.g., [20, 51, 79, 80, 160, 184, 197], etc.) More contemporary reviews of NLF methodology
could be found in [46, 54, 72, 110, 141]). A comprehensive review of the state of the art of NLF is presented
in Crisan and Rozovskii [39].

The simplicity of the nonlinear filtering algorithm is deceptive. While being extremely effective and
stable, this algorithm is computationally expensive due to its polynomial complexity. The most taxing part of
the algorithm is, of course, computing the integrals which has to be repeated on line every time when a new
observation arrives. Direct quadrature methods are effective only when the dimension of the state process
is not larger than 3. To overcome this complication, a new powerful methodology of Particle Filtering was
introduced and developed in the 1980s -1990s. The idea of this approach was to replace quadratures in
(2.1) by Monte Carlo averaging. At time t, the averaging is performed with respect to identically distributed
random particles (

x
(1)
t−1|t−1, . . . ,x

(N)
t−1|t−1

)
with the probability distribution πNt−1|t−1 computed on the previous step using the recursion (2.1) with
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quadratures replaced by Monte Carlo averaging. Generation of the particles(
x

(1)
s−1|s−1, . . . ,x

(N)
s−1|s−1

)
s=0,1,2,...

is called the resampling procedure. It plays the central role in the success of the method. The nonlinear
filter based on the described procedure is often called Markov Chain Monte Carlo (MCMC) filter or particle
filter. Various versions of the optimal nonlinear filters based on Monte Carlo resampling were developed in
the 1990s, including the iterative particle filter (IPF) [109], sampling/important resampling (SIR), particles
filter [46], and a branching particles filter (BPF) [38], etc. For a review, see [46, 110].

2.2. Fundamental Equations of Spatiotemporal NLF and NLF Algorithms for Complex Hidden Markov
Models

One of the main objectives of this project is development of spatio-temporal NLF algorithms and their DOD
relevant applications. Certain progress in this direction has been made during the current stage of the grant.

To address tracking in distributed images we have derived a preliminary version of Zakai and Kushner
equations for spatial-temporal observation process with continuous and discrete observations. In particular,
we have derived the analogs of Zakai and Kushner equations of nonlinear filtering in this setting.

Zakai and Kushner equations of nonlinear filtering are theoretically sound and well understood. How-
ever, even for comparatively simple systems they are too computationally intensive. To bypass this problem
we have developed a new “smart models” of the state. It turned out that stationary and evolution systems
driven by space-only noise provide substantial computational advantages. During this period, we have in-
vestigated systems of this type described by Stochastic PDEs (see Lototsky and Rozovskii [97, 98, 99]).

To reduce the computational complexity we have also developed state models provided by telescoping
Markov processes. The simplest example of this type of processes is referred to as interacting multiple mod-
els (IMM). Our recent results will allow to extend this methodology to very complicated systems. Telescopic
Markov processes are branching processes of special kind. They could model enormously complicated sys-
tems. However, processing of these systems, if done judicially, could be performed on line. The key to
this goal is to do estimation (filtering) and hypothesis testing (evaluation of the relevance of each branch)
simultaneously. The main benefit of this approach is in early truncation of “low priority” branches.

Partial testing of the obtained algorithm was done on the problem of tracking volatility in financial
markets which present a great challenge by their complexity [40, 41].

2.3. Visual Tracking of Dim Extended Targets

Tracking of moving and deforming multiple objects (e.g., battlefield monitoring, visual surveillance in urban
environment, etc.) has always been a topic of substantial interest for military and intelligence services. The
ability to track extended targets in image sequences is a fundamental problem with many applications of
ultimate relevance to the ARMY and DOD. While a substantial progress in this field has been made in the
last decade, the development of a robust framework for tracking extended targets subject to obscuration,
changes in illumination, pose, etc. is still a challenge. We have developed NLF-based spatial-temporal
technology capable of tracking small targets with very low SNR (up to −7dB) in plain images. It is worth
mentioning that this technology allows for handling very dim moving targets with evolving appearance in
noisy and cluttered environments. Our method is based on combination of nonlinear filtering for interacting
multiple models and recently developed Bayesian marginalization technique. Introduction of interacting
multiple models allows to account for evolving appearances of the targets due to maneuvering, obscuration,
etc. The marginalization technique dramatically reduces the computational complexity of the algorithm.
In particular, it makes possible real time multitarget tracking. The precision of the NLF algorithm allows
surveillance with low SNR.

Figure 2.2 illustrates the results of stabilization and target tracking with the NLF algorithm for a very
difficult UAV scenario that includes severe translations and rotations.

Further results of implementation of this approach to detection and tracking of low-observable targets
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Figure 2.2: Video tracking for UAV data.

in video and IR images and its efficiency compared to industry standard methods will be demonstrated in
Chapter 13, Section 6.

3. Nonlinear Filtering for Tracking and Identification of Intentions

One of the central directions of Dr. Rozovsky’s research is applications of Nonlinear Filtering to tracking
complex distributed systems. In the course of this project this research was extended beyond physical
systems. In particular, current methodology is designed to track and identify plans and intensions rather
than position, identity, direction of motion, etc. The mathematical foundation of this methodology is based
on spatial-temporal processes coupled with “telescopic” Markov processes. This presents a substantial
extension of the current paradigm of Hidden Markov Models.

Two approaches for modeling the state process were investigated: direct telescopic Markov chain and a
combination of fast mean-reverting diffusion model parameterized by simple telescopic Markov chain. Low
computational simplicity is the main advantage of the new approach based on the mean-reverting diffusion.
Clearly, low computational complexity allows us to deal with very complex multidimensional systems which
is extremely important for the needs of practical video surveillance.

Figure 2.3 illustrates the results of motion detection and tracking in a sequence of images. Despite the
fact that the object has very low visibility its motion is tracked very reliably.

4. Nonlinear Filtering Methods for Tracking Hidden Attributes and Inference of Collective
Behaviors

4.1. Tracking Hidden Attributes

In 2010 A. Papanicolaou and B. Rozovsky have developed a new parallelization of computations algorithm
and applied it to the Pinocchio example (see Figure 2.4) The resulting speed-up credited to the parallel
architecture for Pinocchio was quite significant. This example provided us with a sense of what kind of
parallel architecture would be appropriate for general nonlinear filtering algorithms for video tracking. It
was developed into reasonably universal algorithm for parallelization of algorithms of nonlinear filtering for
spatial-temporal data.

Algorithms for tracking complex objects require high-resolution image data as input. This results in
a large set of computations to obtain the statistics for an observed image given every possible hypothesis.
We have developed a parallel architecture to distribute the tasks associated with calculating image statistics
required to temper the posterior distribution. In particular, for the particle filter that has been used in our
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Figure 2.3: Motion detection and tracking in images.

Figure 2.4: Tracking Pinocchio in high noise.

algorithm, computing of the main covariance

(yk −H(x
(i)
k ))∗R−1(yk −H(x

(i)
k ))

is hardly possible without extensive parallelization. Standard parallelization algorithms used for similar
computations are based on the so called master-slave approach. However, the master-slave architecture is
effective only if the sample size N is relatively small. As N grows the workload delegated to master rank
will eventually surpass the workload of each slave rank, and such a situation is not a good use of computing
resources because the bulk of the processing power will idle as the master rank works. In other words,
the workload is not well balanced, or we say there is “workload imbalance.” For large N , we have imple-
mented a new parallel architecture that distributes the global workload equally among all ranks, but does
not become crippled by the cost of communicating particle weights, particular when importance sampling
is invoked. The algorithm also takes advantage of importance sampling and bootstrap sampling. However,
a regular bootstrap will defeat the purpose of locally independent particle filters because it creates a compli-
cated global exchange of all local particle data among all of the ranks. To deal with this problem we have
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implemented a truncated global bootstrap sampling where weights below a certain threshold are truncated
to zero when importance sampling is invoked.

Figure 2.4 illustrates the result of tracking.
The related results were partially reported in the paper A. Papanicolaou and B. Rozovsky, “Tracking

Hidden Attributes,” Submitted to SIAM J. Imaging Sciences, 2010.

4.2. Inference of Collective Behaviors: Intent and Target Identification in a Bird Flock

An important direction of our research is tracking intensions of very large groups of agents that exhibit
both group and individual behavior. Collective behavior is manifested in a variety of complex systems
ranging from bacterial colonies, bird flocks, groups of terrorists, insect swarms, troops on the march, and
even to pedestrians. The hallmark of collective behavior is the emergence of self-organization: numerous
but simple local interactions among components result in a complex global behavioral pattern. Besides its
magnificence, collective behavior has been shown to provide benefits to the members of a group in many
facets of their lives such as forage efficiency and reproduction. One of the features that make these possible
is a sudden coherent change in direction. This is achieved through rapid transfers of directional information,
which are more efficient and faster than direct communications.

Rapid coherent changes are typically induced by the combination of external and internal perturbations.
Presence of predators is an example of external perturbation while intrinsic noise is an example of internal
one. The prediction and filtering in real-time of these changes are critical to control and monitor collective
groups. Quantities related to sudden changes are usually hidden and accumulates slowly over a long period
of time. After a certain threshold, however, these quantities take a massive effect on the apparent dynamics
of a group and produce rapid collective changes. Our objective in this study is to monitor and predict hidden
quantities controlling the sudden coherent changes. Furthermore, we seek to identify the source of these
changes. Specifically, we are interested in the collective landing of a bird flock, which usually occurs rather
abruptly from horizontal flight over a food source. We model a flock of birds performing foraging flight
over a field with sporadic food sources. Each bird flies with others in harmony and has individual landing
intent that evolves over time; mainly increases due to hunger. If some birds identify a food source, their
landing intent increases rapidly and a part of them starts landing. Via local interaction that is analogous
to the exchange of social information, other birds begin landing. We model each bird as a self-propelled
particle that assumes a bird to be a lifeless particle and be governed by Newton’s laws. In this framework,
the social interactions between birds can be modeled as Newtonian forces or interaction potentials. The
landing intent and the availability of a food source are incorporated into the model as internal variables.
Since these are hidden, an appropriate framework for this inference problem is the Telescopic Markov chain
(TMC) where the hidden variables reside higher levels in a system hierarchy and evolve according to their
own dynamics conditioned on the higher-level variable. Figure 2.5 shows an evolution of a 30-birds flock.
After initial transient stage, a group of birds maneuver a steady flight until a sudden landing phase. Boxed
parts in the left figure (a) are magnified in (b) and (c), respectively. The arrows represent velocities of birds.

The inference problem of TMC is similar to the hidden Markov model (HMM) applied to vector-valued
Markov chain. However, due to its iterative structure, TMC dramatically reduces the dimension of state
space. In this work, the observation only takes the location of each bird in a flock at discrete time steps.
Since the lowest level of TMC in our model can be cast into a linear dynamical system, the proper inference
model in this level is the Kalman filter. Combining TMC with the Kalman filter, the inference problem can
be formulated in the framework of interacting multiple models.

The model and algorithm developed in this work have great potential for other fields of interest such
as recognition of emotions from facial expressions, multi-target tracking and element recognition, plan
recognition of a multi-agent system, and cooperative decision making. A straightforward application would
be brought up in the context of anti-terrorism on the extension of our previous work of Papanicolaou and
Rozovsky. While intent inference is performed for one agent from noisy video footage in our previous work,
the result here is to be used for intent inference in a multi-agent system as well as target identification.

Several possible improvements are left for future research. First, we need to develop an elaborate model
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Figure 2.5: Evolution of a bird flock.

for agent interactions, which properly reflects a real-world situation of information exchange. This includes
a model for communication mechanism as well as one for agent relationships. Since the relationship between
agents could be cooperative or self-seeking, game theoretic approaches would be needed. Second, the role of
noise needs to be investigated. In the biological context, noise is found to be beneficial to rapid transitions.
However, little has been known for the social context. Last, a simple Markovian assumption may not
sufficient to explain complex behaviors and needs to be modified. Collective memory, which considers
knowledge of the current state as well as the past, would be needed for complex inference problems. The
related results were partially reported in the paper by Park, Rozovsky, and Sowers [120].

5. Uncertainty Quantification in Covert Networks

In collaboration with S. Lototsky (USC) and X. Wan (Princeton) we have developed a novel approach to un-
certainty quantification (UQ) for large stochastic systems. It applies to various complex random structures,
in particular to covert networks. Terrorist networks is a singularly important application of this methodology.

The main achievement of our program is the UQ method for recovery/estimation of system’s structure
from the “camouflaged” data available for observations.

Our approach to UQ in large stochastic systems is based on powerful technique originated in Quantum
Probability. This technique is often referred to as Polynomial Chaos approach. We use this technique to
filter the noisy information gathered in the process of system monitoring and to discover the true structure
of the system (e.g., covert network). The theoretical and numerical foundation of the proposed methodology
were described in our recent papers.

The results of this research is published by Proceedings of the National Academy of Science, USA
(see the paper “A new stochastic modeling methodology based on weighted Wiener chaos and Malliavin
calculus” by Wan, Rozovskii, and Karniadakis [182]). A more general setting was considered in the paper
“Elliptic equations of higher stochastic order” by Lototsky, Rozovskii, and Wan [100]. The mathematical
foundations for these developments are documented in “A unified approach to stochastic evolution equations
using the Skorokhod integral” by Lototsky and Rozovskii [98] and “Stochastic differential equations driven
by purely spatial noise” by Lototsky and Rozovskii [99].
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6. Conclusion

Our results prove that optimal spatiotemporal NLF methods allow for detection and reliable tracking of
small dim objects when standard tracking methods fail (see also Chapter 13).

The developed novel approach to uncertainty quantification can be applied to covert terrorist networks
to recover their true structures.

Current technology of precision positioning/navigation of aircraft, tracks, ships and other moving plat-
forms critically depends on availability of satellite guidance (GPS, etc.). Major terror acts or war could
disrupt satellite based navigation. Also, some covert Army operation might require electronic silence. If
this is the case, the standard satellite based navigation must be ruled out. In contrast, the NLF based algo-
rithms are fully autonomous in that they do not require satellite based inputs. Instead, they utilize recently
developed electronic Geographic Information System (GIS) which is available in the on-board version.
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Chapter 3

Target Tracking Concepts for Distributed
Targets with Unknown Shapes: Multiple
Target Tracking and Tag & Track

The material of this chapter is based on the results of the group of Dr. Medioni, USC (Sections 1–9) and Dr.
Chan, UCLA (Section 10).

1. Introduction

Extended target tracking is a fundamental problem in video surveillance, as it provides the description of
spatio-temporal relationships between observation and targets in the scene. As we discuss above, there are
two core subtasks that we aim to address, one is Multiple Target Tracking and the other is Tag-and-Track.
The two subtasks both have wide application areas in visual surveillance and content-based video analysis.

Detecting and tracking multiple moving objects from a moving platform, e.g. moving objects from an
airborne camera, presents the following challenges. As the size of objects is relatively small from an airborne
view, appearance based detectors suffer from lack of resolution and blurry images. On the other hand, the
motion-based object detection approach relies on the stabilization of the parametric camera motion model
(affine or homography). Moving objects are defined as the areas that have not been stabilized. This method
works well when the scene can be considered planar, or when the motion of the camera is pan/tilt/zoom.
However, 3D depth in the scene produces pixel displacement, which cannot be accounted for by the global
parametric model, usually termed as parallax. Other difficult cases affect detection and tracking in airborne
videos, such as abrupt illumination changes, registration errors and occlusions. Many approaches have
been proposed to improve motion detection and tracking on frame-by-frame and pixel-by-pixel bases, e.g.
global illumination compensation [190], parallax filtering [195], or detection using contextual information
[68, 188]. No much attention has been paid on analyzing the long-term motion pattern of moving objects,
which is a distinctive property for moving vehicles in airborne videos. Conceptually similar to “track-before-
detect” techniques, we aim to involve temporal information in process as early as possible. Indeed, detection
and tracking are coupled: if perfect detection is given, tracking becomes relatively straightforward, on the
other hand, if we know the motion and trajectory of an object, detection is easier. However, surveillance
videos are often of low quality, and the size of moving objects is relatively small from an airborne view,
so the lack of resolution makes it difficult or sometimes even impossible for appearance based detectors to
work in complex scenes.

Another important subtask is to track a single object of interest. This subtask of tracking does not
require the compensation of camera motion and doest not require any prior knowledge of an object of
interest. The object of interest can be any object that is specified by a user during the initialization, e.g.
a person, a vehicle, or an airplane, etc. The essential problem in this sub-task is to online establish an
appearance model to describe the appearance of an extended target and update the model on the fly to adapt
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to appearance changes, which can be caused by varying viewpoints and illumination conditions. Appearance
can also change relative to background due to the emergence of clutter and distracters. Also, an object may
leave the field of view (or be occluded) and reappear. Another critical challenge is when there are some
objects similar to our target appearing in the frame, which makes it hard to model the appearance of the
target to distinguish it from the others. While the generative models easily fail to separate them due to
the lacks of discriminative power, the discriminative models lead to over-fitting problem when trying to.
Moreover, real-time performance in this subtask is an important and challenging requirement.

The main objective of this work is to provide the capability to track a single or multiple extended targets
from a moving platform, e.g. from an airborne camera. Tracking is a critical component of video surveil-
lance, as it provides the description of spatio-temporal relationships between observations and targets in the
scene required by activity recognition modules for surveillance purpose. There are two subtasks that we aim
to deal with: 1) Multiple Target Tracking 2) Tag-and-Track.

For multiple target tracking, we proposed a general framework which makes use of spatio-temporal
consistency in both motion and appearance and does not require the one-to-one mapping between observa-
tions and targets. Inferring the association and targets states according to current observations essentially
suffers from the ambiguity existing in data association [32, 194]. Our method works under a deferred logic
framework, where the decision is made when enough observations are obtained. In order to deal with the
high computational complexity of such an association scheme, a Data-Driven Markov Chain Monte Carlo
(DD-MCMC) [177] method is proposed to sample the solution space. Both spatial and temporal association
samples are incorporated into the Markov chains transitions. We also proposed a tracklet-based approach
and tried to overcome some of the disadvantages of existing methods. It does not require an exhaustive
evaluation of data association hypotheses. It does not assume one-one mapping between observations and
objects, and provides a confidence measure on each tracklet. The algorithm accomplishes this by formu-
lating the tracking problem as inference in a set of Bayesian networks, and uses consistency of motion and
appearance as the driving force. The computed tracklets are then used in a complete multi-object tracking
algorithm. Moreover, we proposed to analyze the motion patterns formed by moving object over time, which
provides a distinctive property to detect single or multiple moving objects in a spatio-temporal volume. We
first provide a straightforward geometric interpretation of a general motion pattern in 4D space (x, y, vx, vy),
which can describe a large amount of commonly seen 2D motion patterns, e.g. traffic at a busy intersection,
crowds on a sidewalk. We propose to use the Tensor Voting computational framework to detect and segment
such motion patterns in 4D space. Beyond segmenting motion patterns, we apply this technique to facilitate
the detection and tracking of each individual object in such a motion pattern.

For the tag-and-track problem, in order to track and reacquire an unknown object with limited labeling
data, we propose to learn these appearance variations online and build a model that describes all seen ap-
pearance while tracking. To address this semi-supervised learning problem, we propose a co-training based
approach to continuously label incoming data and online update a hybrid discriminative generative model.
It was then improved in running time by using a co-trained cascade particle filter framework. The cascade
manner of organizing the particle filter enables the efficient evaluation of multiple appearance models with
different computational costs; thus improve the speed of the tracker. Also, we proposed a method to handle
partial occlusion which is a critical factor causing drift in tracking. Moreover, we proposed to use context
information to enhance the performance of the tracker and deploy it in a full automatic surveillance sys-
tem where a pedestrian is detected, and an active camera follows him to acquire the high resolution face
sequence.

2. Spatio-Temporal Monte Carlo Markov Chain Data Association

Assume that there are K unknown moving targets within the time interval [1, T ]. Let yt denote the set of
foreground regions at time t, Y is the set of all available foreground regions within [1, T ]. Here, we define the
tracking problem as: given the observation Y , infer an unknown number of K tracks ω = {τ0, τ1, · · · , τK},
where τ0 is the set of false alarms, τk is the kth track. Each τk in ω is defined as a sequence of shapes.
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For simplicity, we use rectangles to represent the shapes covering the foreground regions. In the case of a
single target with perfect foreground segmentation, the set of MBRs (Minimum Bounding Rectangles) of
each foreground region at different times forms the best cover of the target. However, when inter-occlusion
between multiple targets and noisy foreground segmentation exist, it is not trivial to find the optimal cover.
In our framework, the tracking problem is formulated as maximizing a posterior (MAP) of a cover of fore-
ground regions, given the set of observations Y , i.e., ω∗ = arg max(p(ω|Y )). By introducing the concept of
cover, we overcome the one-to-one assumption at each time instant, one foreground region can be covered
by more than one target and one target can cover more than one foreground region as well.

To find a cover with reasonable properties, we first define a prior model which considers the following
criteria: we prefer long tracks with few false alarms. In addition, one track should have little overlap with
other tracks. We adopt the prior probability of a cover ω as the product of each prior terms. Also, we consider
a probabilistic framework for incorporating two parts of likelihoods: motion likelihood LM , appearance
likelihood LA. We represent the elements (rectangles) in track k as (τk(t1), τk(t2), . . . , τk(t|τk|)), where
ti ∈ [1, T ], and (ti+1 − ti) > 1, since missing detection may happen. Given one cover, the motion and
appearance likelihood of a target is assumed to be independent of other targets. The joint likelihood of a
cover can be factorized in Eq.3.1.

p(Y |ω) =
K∏
k=1

L(τK) =
K∏
k=1

|τk|−1∏
i=1

L (τk(ti+1)|τk(ti))

=
K∏
k=1

|τk|−1∏
i=1

LM (τk(ti+1)|τk(ti))LA (τk(ti+1)|τk(ti))

(3.1)

With some manipulations, we combine the prior and the likelihood p(ω|Y ) in Eq. 3.1 to have the whole
posterior represented in Eq. 3.2.

p(ω|Y ) ∝ exp{−C0Slen − C1K − C2F − C3Solp − C4Sapp − Smot}
Slen = −

(
K∑
k=1

|τk|
)
, Solp =

(
T∑
T=1

Γ(t)

)
, Sapp =

K∑
k=1

Lk−1∑
i=1

D(τk(ti), τk(ti+1))

Smot =
K∑
k=1

Lk∑
i=1

(
log
(
det(Pi)

1/2
)

+ 1
2eTi P

−1
i ei

) (3.2)

where C0, · · · , C4 are positive real constants, which are determined automatically by Linear Programming
in the training phase [192]. Eq. 3.2 reveals that the MAP estimation is equivalent to finding the minimum of
an energy function. The tradeoff between prior and posterior will lead to a MAP solution.

Searching in such a solution space for Eq.3.2 is not trivial. We propose to use a data-driven MCMC to
estimate the best spatio-temporal cover of foreground regions. To ensure that detailed balance is satisfied,
the Markov chain is designed to be ergodic and aperiodic. It is also important to design samplers that
converge quickly.

In our proposal distribution, the sampler contains two types of moves: temporal and spatial moves.
Temporal moves correspond to changing the labels of rectangles at different time instants, while spatial
moves change covering rectangles at one time instant.

The input to the algorithm is the set of original foreground Y , initial cover ω0 and the total number of
samples nmc. Each move is sampled according to its own prior probability. Note that, instead of keeping
all samples, we only keep the cover with the maximum posterior since we don’t need the whole distribution
but only the MAP estimate. For the same reason, there is no burn-in procedure. The rectangles in the
initial cover ω0 are directly obtained from MBRs of foreground regions. Given the stationary distribution
π(ω) = p(ω|Y ), the acceptance ratio A(ω, ω′) is defined as follows.

A(ω, ω′) = min

(
1,
π(ω′)q(ω|ω′)
π(ω)q(ω′|ω)

)
(3.3)

To demonstrate the concept of our approach, we design simulation experiments. In a L × L square
region there are K (unknown number) moving discs. Each disc presents an independent color appearance
and an independent constant velocity and scale change in the 2D region. False alarms (non-overlapping
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(a) 1st frame (b) 30th frame (c) 43th frame (d) 50th frame

Figure 3.1: Simulation result L = 200, N = 7, FA = 7 and T = 50. Targets may split or merge when they
appear.

with targets) are u.a.r (uniform at random) located in the scene and the number of false alarms is an uniform
distribution on [0, FA]. We compare the tolerance of the target density and false alarms with other methods,
including a JPDAF [12] based method from [76], the MHT from [36] and our own algorithm with only
temporal moves. For each different setting, we generate 20 sequences and each sequence contains T = 50
frames. The MCMC sampler was run for a total of 10K iterations where the first 15% iterations consist solely
of temporal moves. The average score from multiple runs of our method is reported. All four methods
employ the same motion and appearance likelihood. Figure 3.2(a) compares the performance when the
number of targets increases. Figure 3.2(b) shows the tolerance to false alarms for different methods. Because
we consider the spatial and temporal association seamlessly, our method is able to handle the case when split
or merged observations exist.

(a) FA = 0 and T = 50 (b) N = 5 and T = 50

Figure 3.2: (a)STDA as the function of N the maximum number of targets, (b)STDA as the function of FA
the number of false alarms

In summary, we proposed a framework to find a global optimal spatio-temporal association which max-
imizes the consistency of motion and appearance of targets over time. Our method overcomes problems
encountered with one-to-one mapping between observations and targets. A data driven MCMC method is
used to sample the solution space efficiently and the forward and backward inferences enhance the search
performance. Compared to other data association algorithms, the proposed method shows remarkable im-
provement both temporally (i.e. consistency of labels) and spatially (i.e. accuracy of outlined regions). The
work can be extended along the following lines: first, the target motion model can be extended to a more
general model. Second, our framework can naturally incorporate object model information in two ways: 1)
we can assign a model likelihood for each node to extend our likelihood function. 2) we will also use model
information to drive the MCMC proposal.

To track from a moving camera, we need to project targets at different times into a common reference
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Figure 3.3: Overview of the geo-tracking framework

frame. Accumulated errors are introduced when fixed coordinates are selected and no further alignment is
performed. Usually the first frame [76] or the ground plane in the first frame is selected as the reference
frame. Moreover, due to scale change, image coordinates of the targets are not meaningful. Here, we
propose to use a global map (a satellite image) as the reference frame. By registering UAV (Unmanned
Aerial Vehicles) images with the satellite image, we can generate the absolute geo-location of targets. Also,
tracking is performed in geo-coordinates, which have clear physical meaning. In surveillance applications,
occlusion is common. We introduce a two-step procedure for tracking with occlusion. The first step (called
local association) links detected regions within a sliding window and generates tracklets. The second step
(called global association) links the tracklets to form longer tracks and maintain tracks ID.

Figure 3.4: Geo-mosaicing 2000 consecutive frames on top of the reference frame.

We have discussed that data association is essential for successful tracking. We propose the above
MCMC data association algorithm to deal with local data association since errors in local association are
not rectified in the global one. We formulate the local association as multiple targets tracking, in which
the purpose is to find the best partition of observation (i.e. detected moving regions) graph. In the global
association, by assuming the maximum speed and acceleration of targets on the geo-coordinates, we can
define the compatibility of tracklets and this reduces ambiguity in tracklet association. In addition, we adopt
rotation invariant appearance descriptors [77] to represent both color and shape distribution of targets in
each tracklets. The overview of the tracking framework is shown in Figure 3.3.

The geo-registration result is shown in Figure 3.4. Figure 3.5 shows the tracking result on the sequence
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with multiple moving targets. Again when targets are occluded by shadows, local data association may
lose the track identification and thus tracklets are formed. The missing detection caused by occlusion even
lasts for longer than the sliding window of local data association (45 frames). However in global data
association, the tracklets are associated with correct ID throughout the video. The different tracks are listed
in the Z direction in different colors. Figure 3.5(b), 3.5(c), 3.5(d) and 3.5(e) show the beginning frame of
the tracklets of the red truck. Although the appearance of the white van and the white SUV in 3.5(b) is quite
similar, the temporal and spatial constraint on the global map prevents from associating them together.

(a) The tracking result with geo-mosaicing the UAV images on the satellite image

(b) (c) (d) (e)

Figure 3.5: The tracklets and tracks obtained using the local and global data association framework. The
UAV image sequence is overlayed on top of the satellite image.

3. Inferring Tracklets for Multi-Object Tracking

One of the keys to the success of our proposed DD-MCMC approach before is an efficient exploration
of the search space. It tries to make more informative moves, and thus are effective enough to be used
in practice.However, when being applied into aerial context, where there are a number of object detected,
MCMC-based approach is overwhelmed because of the need of an immense number of samples to converge
to a good solution. In addition, the low frame-rate causes many dificulties in just initializing the set of tracks.
With bad initialization and a large number of detections, the problem becomes intractable for the MCMC-
based approach. To address this issue, we proposed a tracklet-based approach and tried to overcome some
of the disadvantages of existing methods. It does not require an exhaustive evaluation of data association
hypotheses. Also it is a MAP estimate, rather than a heuristic. It does not assume one-one mapping between
observations and objects, and provides a confidence measure on each tracklet. The algorithm accomplishes
this by formulating the tracking problem as inference in a set of Bayesian networks, and uses consistency of
motion and appearance as the driving force. The computed tracklets are then used in a complete multi-object
tracking algorithm.

The goal of our algorithm is to infer tracklets, each representing one object, over a (sliding) window of
frames. This window is usually 4-8 seconds in length. The input to our algorithm is a set of object detections
(blobs) in each frame. These can be as simple as connected components taken directly from background
subtraction, or they can be the output of a more complex object detector. Each object detection also has

46



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

Figure 3.6: The role of tracklets in multi-object tracking.

an associated appearance representation, such as the raw image patch, or a histogram. We would like to
emphasize that our goal is to find valid tracklets within a window that shifts with each frame. Aggregation
of these tracklets into tracks that span several windows is done by the (higher-level) tracking algorithm.
Also if the detections of an object become split (or merged) for a period longer than the window size, this
algorithm will find several (or one) tracklets in the window. This must be handled at the higher-level as
well. Details of a multi-object tracker that takes care of these issues is not given here, but the current
implementation is simple. A flow-chart that clarifies multi-object tracking using tracklets is in Figure 3.6.

We do not assume an a priori number of objects in the scene, and the number can vary over time. As a
result, we assume that each detection in the first frame of the window is a potential object. Therefore, we
find an optimal tracklet, or a set of tracklets, starting at each detection in the first window frame. This is not
a problem, because for detections that are false alarms, the model of a valid tracklet (consistency of motion
and appearance) is not satisfied, and the tracklet is discarded. Tracklets that start in the second or later frame
of the window are found when the sliding window shifts to that frame.

3.1. Problem Formulation

If the initial detection of an object is given to us, we know there must be another detected instance of that
object located “nearby” in subsequent frames. We are assuming there are no missed detections (due to
occlusion or else) for now, but split detections, or split-merge detections, do not pose a problem, and this
statement still holds. Therefore, the optimal tracklet, or a set of tracklets, that we want to find must be
composed of a series of “nearby” detections. This can be expressed in a detection tree. For a window size
of T frames, this tree would have T levels. A node in level t has links to those nodes in level t + 1, which
are “nearby.” The root of the tree, t = 0, represents the initial detection.

The number of possible tracklets and tracklet combinations arising from this detection tree is huge, and
we certainly do not want to evaluate every hypothesis. Instead, we realize that every such hypothesis is
making a decision about including or not including each detection. In other words, this is just a binary
labeling, or segmentation problem. The valid detections need to be separated from the invalid detections.
The invalid detections are detections due to noise, or due to objects other than the one that generated the
initial detection. One consequence of this view is that given the valid detections, it is not always known
which tracklets generated them. For example, when there are multiple valid detections in several window
frames, it could be that a single object generated them (and they correspond to multiple split/merge events),
or it could be two (or several) objects being very close to each other. It may seem that nothing was gained
by the segmentation, but actually solving this problem is easier than before, because the search space is
significantly reduced.

There are several ways that the segmentation problem can be solved. A way that we pursue here (without
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further detail) is to determine the labeling in a probabilistic framework.

3.2. Tracklets from Detections

One way to solve this problem is to generate possible tracklets (hypotheses), and find zero or more that best
explain the detections. Note that the search space is significantly reduced than before the segmentation, as
we only need to explain the valid detections. Quite often there will be only one hypothesis.

The possible tracklets are generated by following certain parent pointers up to the root of the tree from
each valid detection, and removing any tracklet that is a prefix of another. To determine which (combination)
of these best explains the detections we first remove those tracklets that do not satisfy certain criteria. These
criteria are:

• the number of detections in the temporal window must be at least half the window size

• the average acceleration of the object must be less than a threshold (≈ 6 m/s2)

• the object must be undergoing a smooth motion.

The second step is to merge tracklets that are a result of split-merge events. This is done by repeatedly
merging tracklets that have similar appearance and motion.

3.3. Occlusion Handling

So far in the discussion we have assumed there is no occlusion or missing data.It turns out that when an
object is occluded but the occluder is detected, the algorithm as presented still works. This is because the
detection tree does not really change, except that no detections in the frame where the object is occluded
will be valid. A tracklet is still found, provided that the object is not occluded for most of the window. In
that case, the tracklet would fail the first criterion above.

The real problem that needs to be handled is missing detections. When there is a missed detection, the
detection tree will be shorter than T . If it is too short, any tracklets that are found will not have enough
detections and fail the first criterion above. This problem is solved by adding “virtual detections” to the
detection tree. These are added whenever a detection in frame t has no nearby detections in frame t+1. The
position of this virtual detection is estimated using the motion model, and the appearance is copied from the
(detected) parent. This procedure is recursive, so that when a newly added virtual detection does not have
nearby detections in the next frame, the process is repeated.

3.4. Experimental Results

We have evaluated the multi-object tracker on sequences captured from an airborne sensor. The sequences
come from the publicly available CLIF 2006 dataset [1]. The video is captured at roughly 2 Hz, and it is
in grayscale. As this is a large format video roughly 6600x7500 pixels, we chose 640x480 subregions over
an expressway for the purposes of evaluation. The sequences were stabilized prior to tracking. All of the
sequences used in evaluation are available for download.

The only moving objects in the video are vehicles, but they are in very low resolution. Each vehicle
is only about 7x7 pixels, which makes detection and tracking quite challenging. Since this low resolution
gives very limited appearance information, we used a simple sum of squared differences function as our
appearance similarity. This is computed after doing a least-squares alignment of the two image patches. The
alignment is parameterized by translation and rotation. In this context, this parameterization is satisfactory.

The moving object detection was done using background subtraction. The background is modeled as
the mode of a (stabilized) sliding window of frames. We have also tried a mixture of Gaussian model, but
we did not see a significant difference. A window size of 16 frames, corresponding to about 8 seconds of
video was used.

Ground truth tracks were manually generated for an 80-frame sequence containing 168 vehicles. Tracks
shorter than the window size were not used in evaluation (for a window size of 16, this left 123 tracks).
Several metrics were used to measure performance: object detection rate (ODR), false alarm rate (FAR),
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ODR FAR NTF IDC
With virtual det. 0.72 0.04 1.01 0.84
No virtual det. 0.61 0.03 1.04 0.90

Table 3.1: Effect of virtual detections on tracking performance.

Window Sz. ODR FAR NTF IDC
10 0.76 0.04 1.06 0.86
12 0.73 0.04 1.00 0.85
14 0.72 0.04 1.00 0.87
16 0.72 0.04 1.01 0.84
18 0.71 0.05 1.00 0.83
20 0.63 0.04 1.00 0.89

Table 3.2: Effect of sliding window size on tracking performance.

normalized track fragmentation (NTF), and ID consistency (IDC). The definition of the ODR and NTF is
the same as in [121]. False alarm rate is the number of false detections divided by the number of total
detections (NOT computed per track and averaged). The last metric is introduced to measure the tendency
of the tracks to “jump” or switch IDs. To calculate this metric, we first label each detection in a ground truth
track with the ID(s) of a test track(s), if any, which contains an overlapping detection. The ID consistency
measures the largest fraction of detections in a ground truth track labeled with one label. Just as NTF, it is
weighted by the length of the track to avoid favoring short tracks. More formally, let G = {gi} be the set of
ground truth tracks, let gi = {gij} be the set of detections in each track, and L(gij) be the label of the test
track associated with the detection gij . The ID consistency of a track gi is

IDCi = max
l

|{gij s.t. L(gij) = l}|
|gi|

(3.4)

and the overall ID consistency is

IDC =
1∑
gi
|gi|

∑
gi

|gi|IDCi . (3.5)

The best ID consistency is 1.
Quantitative results using these metrics are shown in Tables 3.1 and 3.2. The first table shows the effect

of using virtual detections in tracking. The second table shows the effect of different sliding window sizes
on tracking. Qualitative results are shown in the following figures. Figure 3.7 shows tracking results on
sample frames of the sequence used for evaluation.

4. Motion Pattern Analysis and Its Application to Detecting and Tracking Objects on a Mov-
ing Platform

We first address the general motion pattern analysis, and then discuss the specific property of the motion
pattern created by moving vehicles in airborne videos.

Consider a 2D point P smoothly traversing in a spatio-temporal space. By projecting the motion of the
point in a 4D space, (x, y, vx, vy), where (x, y) is the location of the point and (vx, vy) denotes the time
derivatives of motion along x and y axes, we obtain a fiber (dimensionality is one) in the 4D space that
represents the motion characteristic of that point. If a set of 2D points (e.g. on the same object) are moving
in a similar way, a bundle of fibers form a flow. Many types of object motions can be represented by a flow.
A single moving vehicle or a convoy of vehicles observed from an airborne camera are such typical cases.

Generally, we define the motion pattern in the 4D space as a set of motion vectors,

F = {(x, y, vx, vy), (x, y) ∈ R2}. (3.6)
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Figure 3.7: Tracking results on sequence 1. A green box denotes a real detection, whereas a yellow box
denotes an interpolated detection.

(a) Frame 49 (b) Frame 51 (c) Frame 54

Figure 3.8: Example of occlusion handling.

Without loss of generality, in one motion pattern, one motion vector (vx, vy) is assigned at one location
(x, y), i.e. (vx, vy) is a function of (x, y), (vx, vy) = F(x, y). Note that there may exist multiple motion
patterns at the same location, (e.g. at a road intersection). Objects whose motion complies with the same
motion pattern are called objects moving in the same motion context. A motion flow can be regarded as one
particular type of motion pattern.

The motion pattern defined in Eq.3.6 essentially describes the general motion characteristics of objects
over a period of time. In practice, the motion estimation of one object at a time inevitably contains noise.
The estimated motion vectors in a motion pattern F can be written as F = {(x, y, f(x, y) + e)}, where e
accounts for the noise in motion estimation. We aim to analyze the general motion pattern from multiple
noisy motion vectors over time, and then use this information to facilitate detection and tracking of each
object in the motion pattern.

The essential property of a motion pattern is that each smooth motion pattern corresponds to a smooth
sheet in the 4D space, i.e. the local dimensionality is 2. It is easy to know that the dimensionality is 2, since

• the projection of a motion pattern in (x, y) space is 2 in non-degenerate cases, thus the dimensionality
in the 4D space is no less than two;

• at most one motion vector is assigned at one location, thus the local dimensionality is no more than
two.

According to the smooth motion assumption, the normal on the sheet created by one motion pattern changes
smoothly and different motion patterns produce discontinuity between them in 4D space. Noise caused by
erroneous optical flows do not form a coherent sheet with local smoothness.

Suppose we have a set of noisy input samples in the 4D space, we aim to find smooth 2D sheets in this
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space. In order to analyzing the normal and tangent space at each point to infer the geometric structure while
filtering noise out, we adopt Tensor Voting to achieve this task.

Tensor Voting [161] can be regarded as an unsupervised computational framework to estimate local
geometric information. Tensor voting has been proved capable of estimating structures in N-D space with
very noisy input data. In the Tensor Voting framework, the local geometric information at one point in
N-D space is encoded in a symmetric, nonnegative definite matrix. The local geometry can be derived by
examining its eigensystem. Recall that a tensor can be decomposed as

T =

N∑
i=1

λieie
T
i =

N−1∑
i=1

(λi − λi+1)

i∑
k=1

eke
T
k + λN

N∑
k=1

eie
T
i (3.7)

where {λi} are the eigenvalues arranged in descending order, {ei} are the corresponding eigenvectors, and
N is the dimensionality of the input space. The decomposition in Eq.3.7 provides a way to interpret the local
geometry. The largest gap between two consecutive eigenvalues, λi − λi+1, indicates the dimensionality d,

d = arg max
i

(λi − λi+1) (3.8)

The largest difference value λd−λd+1 is the saliency of the dimensionality. The corresponding eigenvectors
{e1, ..., ed} span the normal space of the structure, and ed+1, ..., eN span the tangent space. In our case, we
are interested in the structures whose normal space’s dimensionality is 2 in the 4D space. Given the input
data, a set of 4D motion vectors, {fi}, we encode each sample as a ball tensor, which indicates no orientation
as at the beginning we have no knowledge of the local structure at a point. Each fi receives a vote Tj→i
from its neighbors fj in 4D space. The voting result at one point, which indicates its geometric property,
is obtained by adding up all the incoming votes from its neighbors. The vote from a voter fi to a receiver
fj encodes the tensor at fi, the orientation and the distance from fi to fj . The result of this process can be
interpreted as a local, nonparametric estimation of the geometric structure at each sample position. After
accumulating all cast tensors, the local geometry can be interpreted according to of Eq.3.8.

To detect and segment motion patterns, we take original optical flows computed across multiple frames
as input, without any pruning or clustering. After the voting process, we examine the cast tensor T and keep
the structures of dimensionality 2 with saliency larger than a threshold. After this tensor voting process,
most of the structures created by noise are filtered out. There may exist multiple motion vectors that belong
to the same motion pattern over time, we use the average of the motion vectors to represent the estimated
motion pattern. Note that, we only average motion vectors on the same sheet in the 4D space. This averaging
is essentially different with prefiltering as it is performed after we have the knowledge of local structures.
After detecting the desired structure and filtering out the noise, we use a flood-fill algorithm in 4D space to
segment each motion pattern. According to the smooth motion assumption, the sheet formed by one motion
context has local smoothness and discontinuity exists between sheets caused by different motion patterns.
The neighbor samples in 4D space that have similar normal are assigned the same label. We use principal
angles [23] to measure the similarity between two normal spaces. Two examples of motion pattern are
shown in Figure 3.9. The video used in the second example is at a road intersection, where exist multiple
motion patterns at some location. Directly smoothing in the (x, y) space will destroy such motion patterns.

We have discussed the properties of general motion patterns in 4D space. Now, we analyze motion
patterns in airborne videos, where we aim to find those created by moving vehicles. The essential difference
between motion patterns created by parallax and by moving vehicles is as follows. After principal motion
estimation, the motion pattern of moving vehicles is generated by the intrinsic properties of the objects and
static environmental constraints on the ground plane (e.g. road, or non-road area), which is independent of
camera motion. The motion pattern of parallax is caused by the camera motion, as each motion vector on a
3D structure should be along the epipolar line that is determined by camera’s translation. According to the
relative affine structure [143], the projection pt of a 3D point P on It can be decomposed as,

pt = At,rpr︸ ︷︷ ︸
(1)

+ ket︸︷︷︸
(2)

(3.9)
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: One example of motion pattern segmentation (a)(d) scenes with traffic flows (b)(e) motion
pattern shown in (x, y, vx) space (c)(f) segmentation of motion patterns

where pr is the projection of P in the reference frame, k is a scalar, which is independent of the camera
pose at time t, and et is the epipole at time t. The first term in Eq.3.9 is compensated for by the affine
motion. From the second term, we can see the motion of parallax (ket) is indeed determined by the camera
motion. Interestingly, when the epipole is moving in a non-smooth way, the motion of parallax cannot form
smooth patterns, thus non-smooth epipole motion actually helps us to remove parallax. When the camera
is moving in a smooth way, however, the parallax can still form a smooth motion pattern. Specifically,
in airborne videos, the motion patterns of moving vehicles forms flows. Such flow shows a fiber property
(dimensionality is 1) on a larger scale. This property is due to the fact that the motion range of a vehicle over
time is much larger than its 2D dimensions. In order to examine the geometric property at a larger scale,
we can simply enlarge the voting scale. In our experiments, we observe that, when we enlarge the scale of
voting, the motion field caused by a small 3D structure becomes a point tensor or it remains a sheet for a
large 3D structure. Thus, the procedure of segmenting the motion field created by moving vehicles is: first
vote at a small scale and keep only the 2D structures to remove noise, and then vote at a large scale, keep
only the 1D fiber structures. In practice, instead of directly enlarging the voting scale, we down-sample the
4D space to achieve an efficient implementation.

The motion flow created by moving vehicles may be fragmented due to occlusion. Thus, we propose a
method to stitch them up. After we find each flow, we randomly place several “floats” (square 2D Gaussian
kernels) in the flow and apply the meanshift like method used in along both positive and negative directions,
the “floats” terminate at the ends of the flow. After we have the ends (both entry and exit) of the flows, we
use a vote-casting method inspired from Tensor Voting to calculate the motion consistency between flows.

Given the flow information, detection and tracking becomes much easier. First, most of the residual
pixels caused by noise and parallax have been filtered out. Second, the local dynamics in the motion field
are known. In residual images along the flows, we adopt the motion history image method to segment
independent motion regions. Each segmented region is represented as an oriented rectangle. An association
score between regions Ri and Rj from neighboring (|i− j| 6 δ) frames encodes both appearance similarity
and consistency with the local motion field as:

pij = CSije
−
|R(i)−R̄j(i)|+|R(j)−R̄i(j)|

2 (3.10)

The appearance similarity Sij is simply the normalized cross correlation between two image patches, R̄j(i)
is the predicted location from j to i by using |i− j| steps of mean shift (the direction is sign(i− j)) in the
motion field. According to this similarity measure, we aggregate these isolated regions from different frames
into tracklets. We further filter out isolated regions and very short tracklets that come from noisy motion
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segmentation. For a pre-filtered tracklet, we use the average image patch of the oriented rectangles as its
appearance template. A local translation relaxing is used to find the best matching location for averaging
appearance template. The motion of a tracklet is encoded in its start and end points. Then, we apply the
Hungarian algorithm to associate tracklets into tracks. Here, we encode the entry and exit information of
a flow in the utility matrix used in the Hungarian algorithm. Suppose there are n tracklets in the pool, the
utility matrix A2n×2n is a matrix of size 2n× 2n. A(1,··· ,n)×(1,··· ,n), except its diagonal elements, contains
the similarity between any pair of tracklets, the diagonal of A(n+1,··· ,2n)×(1,··· ,n) stores the termination
probability of each tracklet, which is computed according to the distance between the end point of a tracklet
and the exit of the flow; the diagonal of A(1,··· ,n)×(n+1,··· ,2n) stores the birth probability of each tracklet,
which is computed according to the distance between the start point of a tracklet and the entry of the flow.
All the other elements in A are zero. By expanding the similarity matrix, we impose the environmental
information in the tracklet association to avoid the fragmented tracks in the middle of a flow. Note that the
tracklet association is performed among flows that have been stitched in the motion pattern analysis phase.

The video shown in Figure 3.10, contains strong parallax and a convoy of vehicles passing through a
forest where long term occlusions occur. This video challenges existing motion segmentation and tracking
methods. The residual pixels that do not belong to valid motion patterns are shown in red in Figure 3.10.
Such regions caused by parallax, which sometimes form larger regions than moving objects, cannot be
filtered out by morphological operations or the motion history image method. By flow stitching, the long
occlusion is correctly handled in the forest video. In Figure 3.10, we show the estimated the motion field
after flow segmentation in both the mosaic space and the image space.

5. Online Appearance Modeling with Co-training of Hybrid Discriminative Generative Track-
ers

Tag and track problem by modeling the appearance of the target can be formulated in two different ways:
generative and discriminative. Generative tracking methods learn a model to represent the appearance of
an object. Tracking is then expressed as finding the most similar object appearance to the model. Several
examples of generative tracking algorithms are Eigentracking [24], and IVT [91]. To adapt to appearance
changes, the object model is often updated online, as in [91]. Due to the fact that the appearance variations
are highly non-linear, multiple subspaces [84] and non-linear manifold learning methods [53] have been
proposed.

Instead of building a model to describe the appearance of an object, discriminative tracking methods
aim to find a decision boundary that can best separate the object from the background. Recently, many
discriminative trackers are proposed [10], [33, 115] and demonstrate strong robustness to avoid distracters
in the background. In order to update the decision boundary according to new samples and background,
discriminative tracking methods with online learning are proposed in [10, 33]. Oza and Russell [116] pro-
posed an online boosting algorithm, which is applied to the visual tracking problem [65, 94]. Due to the
large number of features, either an offline feature selection procedure or an offline trained seed classifier is
usually required in practice. Thus, for tracking methods based on online boosting, it is difficult to generalize
to arbitrary object types.

We propose to use co-training to combine generative and discriminative models. Here, the online learn-
ing an appearance model of an arbitrary object with limited labeled data is treated as a semi-supervised
problem. The co-training approach proposed by Blum and Mitchell [26] is a principled semi-supervise
training method. The basic idea is to train two classifiers on two conditionally independent views of the
same data (with a small number of exemplars) and then use the prediction from each classifier to enlarge the
training set of the other. It is proved that co-training can find an accurate decision boundary, starting from a
small quantity of labeled data as long as the two feature sets are independent [26].

We formulate the visual tracking problem as a state estimate problem. Given a sequence of observed
image regions Ot = (o1, . . . , ot) over time t, the goal of visual tracking is to estimate the hidden state st. In
our case, the hidden state refers to an object’s 2D position, scale and rotation. Assuming a Markovian state
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(a) A close look of motion field with ends and entry-to-sink paths

(b) Snapshots of tracking multiple vehicles in the flows. Red indicates the residual pixels that do not
belong to valid motion patterns.

Figure 3.10: Tracking with strong parallax
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Figure 3.11: Online co-training a generative tracker and a discriminative tracker with different life span (the
area bounded by dashed red boxes indicates the background)

transition, the posterior can be formulated as a recursive equation

p(st|Ot) ∝ p(ot|st)
∫
p(st|st−1)p(st−1|Ot−1)dst−1 (3.11)

where p(ot|st) and p(st|st−1) are the observation model and state transition model respectively. p(st−1|Ot−1),
which is represented as a set of particles and weights, is the posterior distribution given all the observations
up to time t − 1. The recursive inference in Eq.3.11 is implemented with resampling and importance sam-
pling processes. In our approach, the transition of the hidden state is assumed to be a Gaussian distribution
as, p(zt|zt−1) = N (zt; zt−1,Ψt), where Ψt is a time variant diagonal covariance matrix. In this recursive
inference formulation, p(ot|st) is the crucial part for finding the ideal posterior distribution. p(ot|st) mea-
sures the likelihood of observing ot given one state of the object. Besides the 2D position, our state variables
encode an object’s rotation and scale. This reduces the appearance variations caused by such motion at the
price of that more particles are needed to represent the distribution.

Our measurement of one observation comes from two independent models. One is the generative model,
which is based on online constructed multi-subspaces. The other is the discriminative model, which is
online trained with HOG features. The features used by these two models, namely intensity pattern and
local gradient features, are complementary. After limited initialization, these two models are co-trained
with sequential unlabeled data. The final decision is made by the combined hybrid model. Due to the
independence between the two observers, our observation model p(ot|st) can be expressed as a product
of two likelihood functions from the generative M model and the discriminative model C, p(ot|st) ∝
pM(ot|st)pC(ot|st).

LetM = {Ω1, ...,ΩL} represent the appearance manifold of one object and Ωl, l ∈ [1, ..., L] denote the
local sub-manifold. An appearance instance x is a d-dimension image vector. Let Ωl = (x̂l, Ul,Λl, nl) de-
note one sub-manifold, where x̂l, Ul,Λl and nl represent the mean vector, eigenvectors, eigenvalues and the
size (number of samples) of the subspace respectively. For simplicity, we omit the subscript when this causes
no confusion. Here, Λ = diag(λ1, . . . , λn) with sorted eigenvalues of the subspace, λ1 > λ2 . . . > λn. A
η-truncation is usually used to truncate the subspaces, namely m = arg mini (

∑
i λi/tr(Λ) > η). From

a statistical point of view, a subspace with m eigenbases can be regarded as a m-dimensional Gaus-
sian distribution. Suppose Ω is a subspace with the first m eigenvectors, the projection of x on Ω is
y = (y1, . . . , ym)T = UT (x− x̂). Then, the likelihood of x can be expressed [107] as

p(x|Ω) =

exp

(
−1

2

m∑
i=1

y2
i
λi

)
(2π)m/2

m∏
i=1

λ
1/2
i

 ·
exp

(
− ε2(x)

2ρ

)
(2πρ)(d−m)/2

 (3.12)

where ε(x) = |x−UUT x| is the projection error, namelyL2 distance between the sample x and its projection
on the subspace. The parameter ρ = 1

d−m
∑d

i=m+1 λi [107] or uses the 1
2λm+1 as a rough approximation.
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By using Eq.3.12, we can evaluate the confidence of a sample from one subspace. As our generative model
contains multiple subspaces (each subspace can be regarded as a hyper-ellipsoid), we maintain the neigh-
borhood according to L2 distance between the mean vectors of subspaces. To evaluate the confidence of one
sample from such a generative model, we use the maximum confidence of the K-nearest (we use K = 4 in
experiments) neighboring subspaces.

In order to represent a large number of sequential samples, we use a fixed number subspaces: if the
number of subspaces exceeds a predetermined maximum, the most similar two subspaces are merged. In
order to maintain the local property of the subspaces, merging only happens between neighboring subspaces.
Merging of two subspaces and measuring the similarity between two subspaces are two critical steps in this
algorithm.

Suppose there are two subspaces Ω1 = (x1, U1,Λ1, N) and Ω2 = (x2, U2,Λ2,M), which we are trying
to merge to a new subspace Ω = (x̄, U,Λ,M+N). If the dimension of Ω1 and Ω2 are p and q, the dimension
r of the merged subspace Ω satisfies: max(p, q) 6 r 6 p+ q + 1. The vector connecting the centers of the
two subspaces does not necessarily belong to either subspace. This vector causes the additional one in the
upper bound of r.

It is easy to verify that the scatter matrix S of the merged subspace Ω satisfies, S = S1+S2+ MN
M+N (x1−

x2)(x1 − x2)T . We aim to find a sufficient orthogonal spanning of S. Let h1(x) denote the residual vector
of a vector x on Ω1, h1(x) = x − U1U

T
1 x. Note that h1(x) is orthogonal to U1, i.e. h(x)′U = 0. Now,

U ′ = [U1,v] is a set of orthogonal bases to span the merged space, where v = GS (h1 (U2, (x2 − x1)))
and GS(·) denote the Gram-Schmidt process. Given the sufficient orthogonal bases, we can obtain the SVD
decomposition of S.

U ′TSU ′ =

[
Λ1 0
0 0

]
+

[
GΛ2G

T GΛ2ΓT

ΓΛ2G
T ΓΛ2ΓT

]
+ MN

M+N

[
ggT gγT

γgT γγT

]
= RΛRT (3.13)

where G = UT1 (x2 − x1), Γ = vTU2, g = UT1 (x2 − x1) and γ = U ′(x2 − x1). Now, the eigenvalue of the
merged subspace is Λ in Eq.3.13 and the eigenvector U is simply U ′R. Note that incrementally updating a
subspace with one observation as in [84] is one special case of merging two subspaces using Eq.3.13.

The other critical step is to determine the similarity between two subspaces. We use two factors to
measure the similarity between two neighboring subspaces Ω1,Ω2, the canonical angles (principal angles)
and the data-compactness.

Suppose the dimensions of two subspaces are p, q, p > q, then there are q canonical angles between
the two subspaces. A numerical stable algorithm [23] computes the angles between all pairs of orthonormal
vectors of the two subspaces as, cos θk = σk(U

T
1 U2), k = 1, · · · , q , where σk(·) is the kth sorted eigenvalue

computed by SVD. The consistency of two neighboring subspaces can be represented as follows.

Sim1(Ω1,Ω2) =

q∏
k=q−d0+1

σk(U
T
1 U2) k = 1, · · · , q (3.14)

As the dimensionality of subspaces is larger than d0, the initial dimension, we select the d0 largest principal
angles, which approximately measure the angle between two local subspaces. In a 3D space, the largest
canonical angle between two 2D subspaces is equivalent to the angle between the two planes. In this case,
we prefer to merge 2D patches with a small plane-to-plane angle. Note that the merge only happens between
neighbor subspaces. The neighborhood is defined according to the mean vector L2 distance. Merging
subspaces with a small principal angle can avoid destroying the local structure of the appearance manifold.

The other factor to consider is data-compactness, which measures how much extra dimensionality is
incurred by a merge operation. Suppose the dimension of two subspaces Ω1, Ω2 is p, q, p > q, the sorted
eigenvalues of original merged subspace are Λr = (λ1, . . . , λr), r = p + q + 1. The similarity based on
data-compactness is defined as

Sim2(Ω1,Ω2) =
∑p

i=1
λi/
∑r

i=1
λi (3.15)
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If Sim2 is close to one, this indicates the merge operation does not incur any new dimension; on the contrary,
if Sim2 is small, this indicates the variations in Ω1 and Ω2 cannot use common eigenvectors to represent it.
Combining the two factors in Eq.3.14 and Eq.3.15, the final similarity between two subspaces is defined in
Eq.3.16.

Sim(Ω1,Ω2) = Sim1(Ω1,Ω2) + wdSim2(Ω1,Ω2) (3.16)

where wd is the weight to balance these two factors. We use wd = 0.2 in experiments.
For the discriminative model, we adopt an incremental SVM algorithm, LASVM [27], to train a classifier

between object and background. SVM [179] is able to form the optimal separating function, which reduces
to a linear combination of kernels on the training data, f(x) =

∑
j αjyjK(xj ,x)+ b, with training samples

xi and corresponding label yi = ±1.
In practice, this is achieved by maximizing the dual objective function maxαW (α) with

W (α) =
∑
i

αiyi −
1

2

∑
i,j

αiαjK(xi, xj)

subject to ∑
i
αi = 0, Ai 6 αi 6 Bi, (3.17)

where Ai = min(0, Cyi), Bi max(0, Cyi). Here, α is a vector of weights on yi. A SVM solver can be
regarded as updating α along some direction to maximize W (α). Let g = (g1, . . . , gn) denote the gradient
of W (α)

gk =
∂W (α)

∂αk
= yk −

∑
i

αiK(xi, xk) = yk − ŷ(xk) + b (3.18)

LASVM suggests that optimization is faster when the search direction mostly contains zero coefficients.
LASVM uses the search directions whose coefficients are all zero except for a single +1 and a single -1. The
two non-zero coefficients, are called τ -violating pair (i, j) if αi < Bi, αj > Aj , and gi−gj > τ , where τ is
a small positive value. and LASVM selects the τ -violating pair (i, j) that maximizes the directional gradient
gi − gj .

We compare our co-trained tracker with two generative methods, including (G1) IVT [91] and our
multiple linear subspaces (G2) algorithm and three discriminative methods, including online selection of
discriminative color (D1) [33], our online SVM method (D2) and ensemble tracking (E.T) [10]. G1 uses a
single 15D linear subspace and updates it incrementally. Note that D1 does not consider tracking with large
scale change and rotation. G1, G2, D2 and the co-trained tracker use the same parameters in CONDENSA-
TION algorithm, but G1, G2 and D2 use self-learning to update their models. We compare these methods
on challenging data sets, which contain image sequences of various types of objects. Detailed comparison
can be found in Table 3.3 [193]. In experiments, we frequently find that the co-trained tracker has better
self-awareness of current tracking performance and can safely enlarge the search range (by changing the
diffusion dynamics) without being confused by distracters in the background. Also, the co-trained tracker
successfully avoids drifting caused by varying viewpoints and illumination changes.

Part of the visual results are shown in Figure 3.12.

6. Co-trained Particle Filter Framework for Robust Object Tracking

Even though our proposed co-trained trackers obtain very good results, the speed of the system is not appli-
cable for using in real-time environment. To improve it, we propose a new co-training framework using a
cascade particle filter to label incoming data continuously and online update hybrid models generatively and
discriminatively. Each of the layers in the cascade contains one or more either generative or discriminative
appearance models. The cascade manner of organizing the particle filter enables the efficient evaluation of
multiple appearance models with different computational costs; thus improve the speed of the tracker. The
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Table 3.3: Comparison of different methods G1:IVT [91], G2: incremental learning multiple subspaces,
D1: online selection of discriminative color features [33], D2: online SVM, E.T: ensemble tracking [10].
D1 uses color information, which is not available for Seq1 and Seq6.

(a) Tracking and reacquisition with abrupt motion and blur

(b) Tracking and reacquisition with long leaving out of field of view

Figure 3.12: Tracking various type of objects in outdoor environments

proposed online framework provides temporally local tracking that adapts to appearance changes. Moreover,
it provides an object-specific detection ability that allows to reacquire an object after total occlusion.

We formulate the co-training in the last stage of our cascade particle filter. This layer is the most
important layer where the final result is given through a co-decision process. This result is then used to
update all of the other models in other layers (as shown in Figure 3.13). Due to the flexibility of our
framework, there are some obvious advantages.

Fast running time: As mentioned above, when sampling, many of samples have low confidence score
(close to zero) because they are not related to the object of interest. To improve the performance, the
cascade particle filter is applied in the way that cheaper models will be put in the very first layers while
more expensive models are arranged in the latter layers. This configuration efficiently boosts the speed of
the whole framework to achieve real-time performance.

General object tracker: Considering tracking as a semi-supervised problem, when we only have very
limited labeled data without an explicit offline-trained model like in [90], the idea is to build an appearance
model on-the-fly to adapt with all the changes in viewpoints, lighting conditions,... during tracking. To
fulfill this task, we adopt co-training as the framework to enhance the powers of different models. In online
training, it is hard for one model to train on its own because the early mistakes could reinforce themselves
while every model will have its own weakness. The best solution is that different models can cooperate with
each other to produce a strong one even when many of them fail at one point of time. Co-training is an ideal
framework to address this issue.

In cascade particle filter, our co-training is set up in the last stage to give the final decision in the
tracking framework, while all of other stages determine if a sample is good to go through the next layer or
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Figure 3.13: Our proposed framework: a co-trained cascade particle filter (CCPF) with three stages.

not. Different from the proposed framework in [90], ours naturally extends to use multiple models in each
stage of the cascade to enhance their complementary powers.

Combination of different models There often lies a choice between which direction to go in building
a model: generative or discriminative. The goal of the generative model is focusing on describing the
appearance of the object while the discriminative model aims to find a way to separate the object and the
background. As discussed in Section II, discriminative models usually perform better than generative ones.
It is natural because it is always harder to “describe” the appearance of an object X than to “tell” what is
different between it and others. However, each of the models has its own advantages and disadvantages.
Our framework opens an easy way to incorporate both of them and strengthen their powers logically.

Moreover, in practice, using one type of features may not be enough to produce a robust tracker. For
example, to track a pedestrian, not only the curves around the body may be of interest, but also the colors of
the clothes and the textures on the whole pedestrian body are very important. To improve performance, we
propose to use different types of features: color, local patch, and object template.

Strong reacquisition: It is worth to emphasize that the outcome of our framework is not only the
tracking result but a detector for that specific object as well, which is extremely useful for reacquisition. For
instance, when the object leaves the field of view and comes back, without any knowledge about exit/entry
points, the only way is doing exhaustive search over the frame to find our object. With the learned model,
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our tracker can find the object easily. Total occlusion is also considered as the same case.
Experiment settings: The framework can run by taking some initial limited data as input. Ideally,

the object of interest is tagged from the 5-10 very first frames. Also, a simple template matching method
is implemented to help initializing the tracker when the object is provided only in the first frame. We
adopt conservative evaluation criteria in decision making for each model. The framework is implemented
as follows. Given the labeled data in the first few frames, we initialize all of the models independently.
When tracking starts, all particles are sequentially passed through the cascade particle filter which consists
of multiple stages. At each stage, the models simultaneously evaluate all the samples and co-decide to filter
out a number of negative samples then propagate the rest to the next stage. At the final stage, a co-training
process takes place to help each model train each other. In our implementation, we adopt one generative and
one discriminative model in this stage.

Comparative analysis Co-trained tracker vs. others: We compare our co-trained tracker with two gen-
erative methods, which are Incremental Visual Tracking (IVT) [139], fragment-based tracking (FT) [2], and
three discriminative methods, including online selection of discriminative color feature (OSDC) [33], en-
semble tracking (ET) [10], and multiple instance learning tracking (MIL) [11]. In IVT, we use a single 15D
linear subspace and update it incrementally.

Video Sequence Frames Occlusion IVT OSDC ET FT MIL Ours
Dark 761 0 17 n/a 94 7 230 759

Jumping 313 0 75 313 44 263 313 313
Handheld 140 0 11 6 22 46 86 140
Vehicle 945 143 163 n/a 10 547 202 802

UAVperson1 184 30 50 50 53 52 154 154
UAVperson2 338 93 33 8 118 92 32 240

Table 3.4: Comparison of different methods IVT: incremental visual tracking [139], OSDC: online selection
of discriminative color features [33], D2: online SVM, ET: ensemble tracking [10], FT: robust fragments-
based tracking using the integral histogram [2], MIL: Visual Tracking with Online Multiple Instance Learn-
ing [11] and our co-trained tracker. D1 uses color information, which is not available for sequences “Dark”
and “Vehicle”.

The comparison demonstrates that the co-trained tracker performs more robustly than other methods.
Note that OSDC requires color information, thus it cannot process some sequences, which are indicated as
“n/a”. The visual results are shown in Figure 3.14, where the tracked objects are bounded with green boxes.
The red box indicates none of the models is updated in this frame. In experiments, we frequently find that
the co-trained tracker has better self-awareness of current tracking performance and can safely enlarge the
search range (by changing the diffusion dynamics) without being confused by distracters in the background.
Also, it can successfully avoid drifting caused by varying viewpoints and illumination changes.

Tracker Average Center Location Error (pixels) Running Time (fps)
One-layer 4.38 4.25
Two-layer 4.93 9.34

Three-layer 5.74 14.79

Table 3.5: Comparison between cascade setup and non-cascade setup in terms of precision and running
time.

Cascade vs. non-cascade: To demonstrate the efficiency of using cascade particle filter, we set up three
trackers which have one layer, two layers, and three layers, respectively. The one-layer tracker indeed uses
our proposed co-trained models. The two-layer tracker contains the co-trained tracker and. After the first
layer, half of the samples are kept; while after the second layer, 25% of the samples are preserved. Therefore,
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(a) Fragment-based Tracking (FT) [2]

(b) Multiple instance learning tracking (MIL) [11]

(c) Our co-trained tracker

Figure 3.14: Some visual comparative results between our co-trained tracker and other trackers in several
sequences ‘Handheld”, “UAVperson2”, and ‘Vehicle” (from left to right).

with the sampling of 600 particles, 300 remaining particles are evaluated by the final stage of the two-layer
tracker; whereas 75 best particles are evaluated in the last stage of the three-layer tracker.

The performance of these trackers is compared based on the average center location error and the running
time, which is shown in Table 3.5. The six sequences used in the previous experiment are adopted. The
results clearly show that cascade particle filter improves the running time performance by a large margin,
while producing comparable robust results.

Reacquisition performance: One of the main advantages of our tracker is the reacquisition ability
which is not well explored by other state-of-the-art algorithms. Our method not only ensures the quality
of long-term tracking results but also provides the capability to re-detect an observed object after it leaves
the field of view. To evaluate this reacquisition ability, we synthesize the leaving out of the field of view
behavior of an object. We create a new sequence after deleting several frames from the original one. We
start from the beginning of the sequence (after ignoring some initial frames for the learning phase), for each
step of 50 frames, we replace 30 continuous frames by a synthetic background image. Note that each step
forms a new sequence. 109 new sequences are thus created. Some examples of the new data sets are shown
in Figure 3.15.
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To evaluate the reacquisition ability, we count the number of tracked (reacquired) cases, the number of
missed cases, and the number of false alarm cases. If the tracker can reacquire the object within at most
10 frames after the object re-appears, and the overlapped region between the tracked and the ground-truth
windows is larger than 50% of the ground-truth window, it is counted as tracked case. The details of the
results are shown in Table 3.6.

Video Sequence No of cases No. of tracked cases No of missed cases Number of false alarms
Clutter 29 29 0 0

Handheld 3 3 0 0
Jumping 5 5 0 0

Scale 37 24 9 4
Sylvester 26 20 4 2

UAVperson1 4 4 0 0
UAVperson2 5 5 0 0

Total 109 90 13 6

Table 3.6: Reacquisition performance of our tracker.

It can be observed that most of our missed cases come from the two sequences “Scale” and “Sylvester”.
This is because they contain extremely difficult cases where the object appearance changes differently in
terms of scale, pose, lighting while the synthesized leaving-out-of-field cases happen.

Figure 3.15: Synthesized data sets for testing reacquisition. From left to right: before leaving-field-of-view,
synthesized background, reappeared object.

7. Partial Occlusion Handling in Object Tracking

In our previous proposed methods, we did not address the occlusion issue explicitly but use a threshold
to control the update process so that the appearance models are only updated when there is no occlusion
and vice versa. However, to define such a threshold is not straightforward. There is a trade-off between a
“conservative” update or an “easygoing” update in order to adapt to the appearance change. To address this
issue, we propose improve our current approach by proposing to use a co-training framework of generative
and discriminative trackers to detect occluding region and continuously update both models using the infor-
mation from the non-occluded part. The generative model encodes all of the appearance variations using a
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(a) Occlusion (b) Discriminative (c) Generative (d) KLT (e) Movement

Figure 3.16: Partial occlusion observations on our trackers and KLT feature movement

(a) Partial occlusion cases at frame 28, 88, and 185

(b) Generative tracker model update (c) Discriminative tracker model update

Figure 3.17: Occlusion recovery from our trackers (image is scaled to 32x32 for training)

low dimension subspace, which helps provide a strong reacquisition ability. Meanwhile, the discriminative
classifier, an online support vector machine, focuses on separating the object from the background using a
Histograms of Oriented Gradients (HOG) feature set. To detect occlusion, a likelihood map is generated by
the two trackers through a co-decision process. To handle the cases when there is disagreement between
these two trackers, the movement vote of KLT local features [145] is used as a referee. Finally, each tracker
recovers the occluded region and updates the models using the new non-occluded information.

To detect the occlusion, each model estimates the occlusion likelihood of each block in a sample and
makes the decision together. The KLT features are also generated and tracked in order to determine when
occlusion happen through a movement voting process. Some observations obtained from generative model,
discriminative model, and KLT tracker are shown in Figure 3.16 when occlusion appears.

7.1. Generative Tracker

We propose to use a single linear subspace to approximate the appearance model of the object. This is
close to the incremental visual tracker (IVT) [139], but with partial occlusion handling. To detect partial
occlusion, as discussed in Section 2, the projection error is split into blocks as done in the discriminative
tracker. We simply compute the occlusion likelihood by using the projection error over each block. The
projection error at block ith is:

εi(xi) = |xi − UUT xi| (3.19)

These likelihood values are then used to generate a binary occlusion likelihood map. The 0 value corre-
sponds to the block having score lower than 50% of the maximum score block, and 1, otherwise.
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7.2. Discriminative Tracker

We also compute the classifier score on each block instead of the whole sample patch to infer where the
partial occlusion occurs. The decision function of conventional SVM is

f(x) = β +

nsv∑
k=1

αkK(x, xk), (3.20)

where xk : k ∈ {1, 2, ..., nsv} are the support vectors. K(x, xk) is the kernel function; and β is the bias
constant. Here, a linear kernel is used, which means K(x, xk) is the inner scalar product of two vectors in
<n. Now we have to distribute the bias constant β to each block Bi; so that the contribution score of each
block in the final classifier confidence score can be computed after subtracting that local bias βi from the
total feature inner production over that block.

We can have the distribution of bias constant on each block:

βi = B.w̃Ti .

A N+∑
p=1

B+
p;i +

N−∑
q=1

B−q;i

 (3.21)

The occlusion likelihood map is generated as a binary image based on the block score, which is 0
for negative and 1, otherwise. Each pixel in the likelihood image corresponds to a block in the sample. To
recover from the occlusion, the non-occluded part is kept while the occluded area is inferred from a previous
frame (as shown in Figure 3.17(b)). In a long-term partial occlusion, we can consider this step as a recursive
process where the occluded area of the object in the current frame is projected from that of the object in the
previous frame, which may also be drawn from its previous one.

7.3. Local Features Movement Voting Using KLT

Taking advantage of the simplicity and fast computation of KLT features [145], tracking consistency is
checked based on the movement of these features in the object region at every frame. Due to the discontinuity
between non-occluded and occluding regions, some KLT features are driven in the same direction and
velocity which are different from the remaining part. Taking account this observation, we propose a voting
scheme on the movement of these local features to detect occlusion.

After being detected in the first frame, these features are tracked in every frame. After removing all of
the outliers, the magnitude displacement of each feature is then normalized to [0,1] and encoded in a 4-bin
histogram. The direction of the movement is encoded in a 8-bin histogram, each of which covers a π

4 span.
All displacement vectors, thus, are accumulated into a 4x8 2D histogram.

When there is a majority of KLT features in a region having different movement behavior than the rest,
partial occlusion is detected. In practice, we choose θ = 0.7. It is important to note that the KLT features
are re-initialized after occlusion and this step is only applied as a referee when there is disagreement on
occlusion detection between the two generative and discriminative trackers.

7.4. Experiments

In the first frame, we manually select the object and apply simple template matching for the next 4 frames.
These initial labeled data are then transferred to both generative and discriminative trackers for training.
Our Bayesian framework generates 600 particles at each frame. The combined tracker is implemented in
C++ and runs at 4fps on an Intel QuadCore 3.0GHz system. We tested our algorithm on several challenging
published video sequences of different types of objects in indoor and outdoor environments. Several related
state-of-the-art trackers included in the comparison are the Co-Tracker [193], which is the most related
to our tracker, the Frag-Tracker [2], the Online and Semi-Boosting Tracker (OAB, SB) [62, 64], the P-N
Tracker (PNT) [75], the MILTracker [11] and its new variation with no regret MIO Tracker [89]. We use the
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(a) Occluded Face 2

(b) Person

(c) Tiger 2

Figure 3.18: Some screen shots from the testing results. Because of clarity issue, we only choose Frag-
Tracker[2], MILTracker[11] to show some results comparing with our tracker.

provided results and published source code from the authors1,2,3 . To prove the precision of our tracker, we
used the same measurement, average center location errors (in pixels), used for evaluation in [11, 89]. All of
the testing sequences provide long-term and heavy partial and total occlusions, and challenging appearance
changes such as illumination changes, abrupt motion, rotation, and cluttered backgrounds.

Video Sequence Frames GT DT FT OAB ST PNT MILT MIO CoT Ours
Coke Can 292 102 9 67 25 85 8 21 22 10 8

Occluded Face 1 900 86 17 7 44 41 8 27 14 16 5
Occluded Face 2 808 14 12 21 21 43 8 20 13 12 7

Person 200 35 73 44 37 154 44 34 n/a 33 5
Tiger 1 354 52 6 40 35 46 13 15 24 5 4
Tiger 2 365 43 7 37 34 53 21 17 23 7 5

Table 3.7: Average center location errors. (GT: Generative Tracker, DT: Discriminative Tracker, FT: Frag-
Tracker [2], OAB: Online Boosting Tracker [62], ST: Semi-Boosting Tracker [64], PNT: P-N Tracker [75],
MILT: MILTracker [11], MIO: MIL No Regret Tracker [89], CoT: Co-Tracker [193] ) in different challeng-
ing datasets. The best performance is in bold, the second best is in italic.

8. Context Tracker: Exploring Supporters and Distracters in Unconstrained Environments

A major research axis has been focused on building a strong model to encode the variations of object appear-
ance while distinguishing it from the background. By doing this, a fundamental dilemma occurs: the more
complex the appearance model, the more expensive it is. At the extreme, the emergence of cluttered back-

1MILTracker: http://vision.ucsd.edu/˜babenko/project_miltrack.shtml
2Frag-Tracker: http://www.cs.technion.ac.il/˜amita/fragtrack/fragtrack.htm
3Semi-boosting Tracker: http://www.vision.ee.ethz.ch/boostingTrackers/index.htm
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ground and the occurrence of regions having similar appearance as the target makes appearance modeling is
very challenging.

In fact, there is additional information which can be exploited instead of using only the object region.
Context information has been applied actively in object detection [45], object classification [88, 114], object
recognition [138]. It has been employed recently in several tracking methods [63, 191]. One reason for
context being overlooked is the fast run-time requirement. Also, visual tracking, especially single object
tracking, is considered as a semi-supervised problem where the only known data is the object bounding
box in the first frame (or in first few frames), which means learning such a context needs to be performed
on-the-fly.

Here, we propose to exploit the context information by expressing it in two different terms: 1) Dis-
tracters are regions that have similar appearance as the target, 2) Supporters are local key-points around the
object having motion correlation with our target in a short time span. Supporters occur in regions belonging
to the same object as the target, but are not included in the initial bounding box. In other words, the goal
of our algorithm is to find all possible regions which look similar to the target to prevent drift, and to look
for useful information around the target to have strong verification. The target and distracters are detected
using shared sequential randomized ferns [117]. They are represented by individual evolving templates.
The supporters, on the other hand, are represented as keypoints, and described using descriptors of the local
region around them.

8.1. Distracters

(a) Initialization (b) Exploit all other distracters (c) Tracking the distracters
even when the object leaves
FoV

(d) Reacquire the target with-
out confusion with other dis-
tracters

Figure 3.19: Automatically exploiting distracters. Target is in green, distracters are in yellow.

Distracters are regions which have appearance similar appearance to the target and consistently co-
occur with it. Usually, distracters are other moving objects sharing the same object category as our target
(Figure 3.19). To build an appearance model to distinguish objects of the same type is equivalent to develop
a recognition system which needs a large amount of supervised samples to train. However, in visual tracking,
the tracker has temporal and spatial information help to exploit which region is “dangerous” to preclude.
To prevent our tracker from drifting to these regions, we propose to detect and initiate a simple tracker for
each of them so that we can minimize confusion during tracking.

Due to the efficiency of randomized ferns classifier, which is widely used in recognition [28, 118], and
tracking [75], we employ it to detect possible distracters in every frame. Randomized ferns were originally
proposed by Özuysal et al. [117] to increase the speed of randomized forest [29]. Unlike tree-structure in
randomized forest, ferns, having non-hierarchical structures, consist of a number of binary testing functions.
In our case, each of them corresponds to a set of Binary Pattern features. Each leaf in a fern records
the number of added positive and negative samples during training. For a test sample, its evaluation by
calculating the binary pattern features leads it to a leaf in the fern. After that, the posterior probability for
that input testing sample in feature vector xi to be labeled as an object (y = 1) by a fern j is computed as
Prj(y = 1|xi) = p/(p + n), where p and n are the number of positive and negative samples recorded by
that leaf. The posterior probability is set to zero if there is no record in that leaf. The final probability is
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calculated by averaging the posterior probabilities given by all ferns:

Pr(y = 1|xi) =

T∑
1

Prj(y = 1|xi) (3.22)

where T is the number of ferns. To improve the running time, these randomized ferns are shared between
our object detector and distracter detector. Each tracker controls the posterior probability by adding its
positive and negative samples to the ferns according to the P-constraints and N-constraints, respectively as
in [75]. The P-constraints force all samples close to the validated trajectory to have positive label, while
N-constraints have all patches far from the validated trajectory labeled as negative. Different from [75],
we avoid adding hard negative samples to avoid over-fitting. Also, during tracking, when the appearance
of a distracter is different from our target, we discard it. Indeed, it helps to emphasize that our focus is on
tracking a single target, not on multiple target tracking. This clearly explains the intuition: when several
objects have similar appearance to our object, the target tracker pays attention to them; if these distracters
change their appearance and no longer look like our object, they can be ignored.

Therefore, a sample is considered a distracter candidate if it passes the random ferns with a probability
Pr(y = 1|xi) > 0.5, and is not the target. How to determine a candidate as our target is discussed in Section
4. We maintain an M frames sliding window and count the frequency fdk of a candidate k based on its
appearance consistency spatial consistency related to the target. Then a candidate is classified as a distracter
as follows

Pd(yd = 1|xi) =


1 if fdk > 0.5

and d(xi,M) > 0.8
0 otherwise

(3.23)

where Pd(yd = 1|xi) is the probability for a candidate i in a feature vector xi having label yd, while

(a) Detecting all supporters (b) Learning the active sup-
porters

(c) Avoid drifting to other re-
gions while target is under oc-
clusion

(d) Reacquire the target with
strong supporter model

Figure 3.20: Learning supporters. Active supporters are pink dots, passive supporters are in blue dots, object
center is black dot.

d(xi,M) is the confidence of this candidate evaluated by the template-based model of the target. The first
condition allows to detect distracters which repeatedly co-occur with our target, while the second one helps
to exploit distracters having very similar appearance to our target.

8.2. Supporters

We aim to build an efficient supporters set which helps to quickly verify the location of the target. Support-
ers are features which consistently occur around the object as shown in Figure 3.20. They also have a strong
correlation in motion with our target. It is worth noting that our goal is tracking in unconstrained environ-
ment with several challenges such as frame-cuts, abrupt motion due to hand-held camera recording. It limits
us from using some motion model to predict the location of a target based on the motion of the supporters as
in [63] or of the auxiliary objects as in [191]. We also would like to emphasize that our candidate responses
are obtained based on detection. The supporters are also detected from the local region around each can-
didate. After that, these supporter detection responses are matched with the ones from previous frames to
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find the co-occurrence between them and our target. In fact, from these results, the motion correlations are
also inferred without using very complex motion models needed in unconstrained environments. Moreover,
unlike the supporters proposed in [63] which are expensive to detect and match in the whole frame, our
supporters are efficiently detected and matched around the locations of the very few candidates having high
probability to be the target in each frame.

To detect supporters, we use the Fast Hessian Detector and employ SURF descriptor as in [18] to de-
scribe the region around them. We store all of these supporters in a sliding window of k frames (k = 5
in our implementation). There are two types of supporters: active and passive. The active supporters are
the ones co-occurring with our target in high frequency fs > 0.5 within the sliding window, while passive
ones are the rest. When there are regions having similar appearance to our target but not being tracked by
distracter trackers, all of SURF features are detected around these regions. After that, they are matched
to our supporter model, which basically are the latest descriptors of the supporters in the sliding window.
Finally, the supporting score is computed as follows

Si =
nam
nta

(3.24)

where nam and nta are the numbers of active matched supporters and total active supporters in the model.
A supporter model is considered strong if Si > 0.5 and nta > 5 (to avoid the unstable information within
non-textured regions around our target). Then all of the matched results are used to update the supporter
model. Note that the unmatched results are also added to the model.

8.3. Context Tracker

We use the P-N Tracker [75] as our basic target tracker with several extensions. First, we extend the ran-
domized ferns to accept multiple objects; in fact, it is not equivalent to a multi-class classifier because each
object preserves its own posterior probability while they may share the same object type as our target. Sec-
ond, we applied our new 6bitBP which helps to boost up the speed of the detector. Our 6bitBP makes use
of the constant value of each whole patch during evaluation. Third, instead of using only the first initial
patch as the object model, which is quite conservative and vulnerable to appearance changes, we use the
online template-based object model as in [74]. However, we improve this model by constructing it in binary
search tree using k-means. The model is iteratively split into two subsets to form a binary tree. By doing
this, the computational complexity to evaluate a sample is O(logn) instead ofO(n) when using Brute-force.
This improvement is important in improving the running time because the online model linearly grows to
adapt to appearance changes. It is worth noting that other tracking methods can also be extended using our
concepts. However, we choose the PN-Tracker because it uses scanning window to search for all of possible
candidates in the whole image which helps to explore the context at the same time. Also, the randomized
forest is extendable to reduce the cost of initializing a totally new tracker for a distracter.

As discussed, distracters are regions which have similar appearance as our target. In our tracker, a testing
sample confidence score is computed using Normalized Cross-Correlation (NCC) between it and the closest
image patch in the object model. The region having the highest confidence is considered as the current target
if its score is larger than a threshold θ = 80%. However, in practice, there are several other regions satisfying
this condition. After we choose the best candidate as the tracking result, all of other responses are associated
to the distracter trackers using greedy association: the tracker producing higher confidence on a patch is
associated with higher priority. The remaining regions trigger new distracter trackers. These trackers are
formulated similarly to our basic tracker. However, to avoid the increasing number of unnecessary trackers,
they are terminated whenever they lose their target.

Assuming that we have the valid target at frame t, the supporters are extracted around the location of
that target with a radius R. After that, a sliding window of k = 5 frames is used to store and match the
previous supporters with the current ones. Each match makes the frequency of that supporter increase by 1.

In practice, there are several candidates similar to our target with very high confidence score. In fact, the
right candidate may not even obtain the highest score, especially when the appearance is changing (as shown
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(a) Start changing appearance (b) Exceeding the threshold,
drifting.

Figure 3.21: Drifting to another object with the highest score.

(a) PNTracker [75] on MultipleFaces sequence (b) Our context tracker on MultipleFaces sequence

(c) PNTracker [75] on Babies sequence (d) Our context tracker on Babies sequence

Figure 3.22: Comparison between PNTracker [75] and our context tracker on challenging sequences

in Figure 3.21). Without context, the tracker obviously switches to the one with the highest score. Also,
in unconstrained environments, our target may leave the FoV, or be completely occluded by other objects.
The tracker will simply switch to another region satisfying the threshold θ. Here, our tracker automatically
exploits all the distracters and pays attention to them by tracking them simultaneously. Also, our tracker
discovers a set of supporters to robustly identify the target among other similar regions

8.4. Experiments

In our implementation, we use 8 ferns and 4 6bitBP features per fern. All thresholds are fixed as described.
The most important threshold is the one which validates the correct target. It is calculated by the NCC
between a candidate and the online object model. It has been carefully chosen as 80% according to the
experiment demonstrated in [74], which also shown that LOOP event outperforms the other growing ones.
Our scanning window starts searching the minimum region of 20x20. For a sequence of resolution 320x240,
the number of search windows is 100k while in 640x480, it is 600k, approximately.

We compare our tracker with and without context elements. The PNTracker is used as reference. It
is worth noting that the implementation of PNTracker1 is the combination implementation of [74, 75]. To
emphasize the contribution of context in terms of distracters and supporters, we choose two very challenging
sequences which contains similar objects moving: Multiplefaces, and Babies. It is important to note that in
most of the cases where no strong context exists, our tracker still shows overall better results than PNTracker
and outperforms other state-of-the-art methods.

To demonstrate the performance of our context tracker we use several recent state-of-the-art methods
for comparison including: FragTracker (FT) [2], MILTracker (MILT) [11], CotrainingTracker (CoTT) [193],
PNTracker [75], DNBSTracker (DNBST) [87], VTDTracker [81]. All codes com from the original authors.

1PNTracker: http://info.ee.surrey.ac.uk/Personal/Z.Kalal/
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Video Frames FT MILT CoTT DNBS VTD PNT Ours
Animal 72 69 9 8 19 6 37 9

Carchase 5000 lost @ 355 lost @ 355 lost @ 409 lost @ 364 lost @ 357 @1645 24
Clutter 1528 lost @ 1081 lost @ 413 9 6 6 4 6

ETHPed 874 lost @ 95 lost @ 95 lost @ 95 lost @ 635 lost @ 95 10 16
Girl 502 lost @ 248 30 14 39 69 19 18

Liquor 1407 lost @ 47 lost @ 288 30 lost @ 404 lost @ 404 21 10
Motocross 2665 lost @137 lost @ 485 lost @ 591 lost @ 10 lost @ 10 10 12
Multifaces 1006 lost @ 64 lost @ 64 lost @ 394 lost @ 64 lost @ 64 @ 97 26

Scale 1911 8 11 6 lost @ 269 3 6 2
Vehicle 946 lost @ 679 lost @ 481 9 lost @ 517 lost @ 517 8 8
Speed 1.6 14 2 7 0.2 12* 10

Table 3.8: Average center location error (pixels). Performance comparison between the trackers (FT: Frag-
Tracker [2], MILT: MILTracker [11], CoTT: Co-Tracker [193], DNBS: DNBSTracker [87], VTD: Visual
Tracking Decomposition [81], PNT: PNTracker [75], and Ours: Our context tracker) in different challeng-
ing video sequences. The best performance is in bold, the second best is in italic. The number in blue color
indicates the frame number when the tracker gets lost. The * indicates that the method was implemented on
Matlab using C-Mex.

The chosen data set includes several challenging sequences: Motocross and Carchase in [75], Vehicle
in [193], Liquor3, ETHPedestrian4, Multifaces2, Clutter and Scale5, Animal used in [81], and Girl in [11].
They contain occlusion and object leaving FoV (Motocross, Carchase, Vehicle, ETHPedestrian, Multifaces,
Girl), very cluttered background (Carchase, Liquor, ETHPedestrian, Multifaces) out-of-plane rotation (Car-
chase, Vehicle, Multifaces, Girl), abrupt motion (Motocross, Clutter, Scale, Animal), motion blur (Liquor,
Clutter, Animal). Several of them are recorded in unconstrained environments such as Motocross, Vehicle,
ETHPedestrian, Carchase, and Animal.

Because our chosen data set is very challenging with a number of long-term sequences, most current
methods fail somewhere in the middle of a sequence. Therefore, we note the frame number where a tracker
starts to lose the object and never reacquires. It means we accept the result of a tracker even when it fails
to get the right target in several frames before reacquisition happens. A target is considered “lost” if the
overlapping region between its bounding box and the ground-truth is less than 50%.

The quantitative comparisons are shown in Table 3.8. The running time comparison (in the last row)
is for a raw reference as different methods have different search range which impacts the speed greatly. It
shows that our tracker has overall better performance than PNTracker of [75] with the help of context, and
outperforms all other approaches. Although most of them may work well in controlled environments, it is
difficult for them to consistently follow the target in long-term sequences and in unconstrained environments.
There are some large numbers in our results (“Carchase”, “Motocross”) is because it reacquires the object in
several frames later than the ground truth, which makes the overall score look not good when we calculate
the error using its previous position.

9. Active Vision System Using a Network Pan-Tilt-Zoom Camera

Research on human faces is a very important and interesting topic in computer vision with various appli-
cations such as biometric identity. Regular CCTV cameras cannot extract human faces with reasonable
resolution when they are far away. PTZ cameras can zoom, pan, and tilt to get a close view. Today, this
process only occurs under human control, which is impractical with a large number of cameras. Thus,

3PROST dataset: http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.
php

4ETH dataset: http://www.vision.ee.ethz.ch/˜aess/dataset/
5 http://www.vision.ee.ethz.ch/boostingTrackers/index.htm
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(a) Animal sequence (b) ETHPedestrian sequence

(c) Motocross sequence (d) Carchase sequence

Figure 3.23: Some snapshots of our context tracker on several sequences.

Figure 3.24: Scenario

automatically generating high resolution face sequences from PTZ cameras would be very helpful. Many
challenges such as network delays, packet loss, and slow response commands still need to be addressed.
Given such a scenario, we need not only a robust real-time tracker but also a flexible and smooth control
module. The tracker needs to learn the face appearance changes under different conditions. It also has to
be robust against cluttered background, abrupt motion, motion blur, and must reacquire the object after total
occlusion or leaving FOV. In addition, when a PTZ camera is in wide mode, it performs as a regular CCTV
camera, which means when a person is far from the camera, no face detector can detect the face within only
few pixels (as shown in Figure 3.24). A practical system should automatically identify the region of interest
containing the face, and zoom to detect, then track this face. To address all of the above issues, we present
an autonomous system running in 3 different image modes, and 2 camera control modes. The overview is
shown in Figure 3.25, where the operators acting on image and on camera are illustrated in light blue and
light orange boxes, respectively. Our system uses a PTZ network camera to capture image sequences. The
detector in pedestrian detection mode detects people in the FOV. The camera then switches to ROI focusing
mode in order to zoom in the upper part of the detected human body. After that, the system goes into face
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Figure 3.25: Overview of our system
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Figure 3.26: One-step-back strategy camera control

detection mode to find the face of interest, which was hard to detect from far away in wide angle focal length
(Figure 3.24). An active tracking mode consiting a control loop with two interchangeable modules: camera
control and tracking ones is then triggered to follow the target by keeping it around the center of the image
at a proper predefined size.

9.1. Pedestrian Detection Module

Many methods model the background then apply a background subtraction algorithm to detect moving
objects. However, it is impractical to model the background under all of possible variations of PTZ camera
parameters. Moreover, the environment conditions can change all of the time. In practice, there are not only
pedestrians moving but also other objects such as vehicles and foliage in wind. Hence, we want to generalize
the problem by employing a frame-based state-of-the-art pedestrian detector to find a walking person in the
camera’s FOV. Several pedestrian detection methods were proposed such as [42, 187]. However, most
of them do not have near real-time performance. Recently, Huang et al.[70] proposed a high performance
object detection using joint ranking of granules (JRoG) features. With a simple ground plane estimation, this
detector takes only 70 ms to scan a 640x480 test image at 16 different scales. JRoG is a simplified version of
APCF [50] descriptor after excluding gradient granules. For feature selection, two complementary modules
which are an SA and an incremental module were successfully proposed to find the optimal solution. After
that, the part-based detection approach [187] is adopted to find the optimal combination of multiple partitions
of body parts in the complex scene. For more details please refer to [70]. To avoid false alarms, we
use the simple frame difference background subtraction technique to filter out most of static region in the
background. Also, it is important to note that we do not need to run the pedestrian detector in every frame,
and we continuously run it once per second instead.

9.2. ROI focusing module

After receiving the results from the pedestrian detector module, the system automatically chooses the highest
confidence response and switches to the ROI focusing mode. Roughly, the head of a person is about 1/5
the total height of whole body. In this mode, the camera parameters are adjusted so that the head position is
close to the center of the image while its height is in the defined range. More clearly, let C(cx, cy) denote
the center of the image, P (px, py) the center and hp the height of the ROI in the current state. The camera
pans, tilts, and zooms so that on the image plane:

P → C
hp → minh if hp < minh
hp → maxh if hp > maxh

(3.25)
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Figure 3.27: Indoor experiment results

where minh = 80 and maxh = 120 are the minimum and maximum heights of the face, respectively.
Because this function only needs to be performed once, absolute commands are sent to control the camera.
The output of this mode is a new video stream where the face in high resolution is likely in the image. It is
important to note there is some possibility that no face exists in the new video stream: a false alarm from
pedestrian detector, a person facing back or a fast moving pedestrian.

9.3. Face Detection Module

This mode is in charge of detecting the face in the current image. We employ the real-time face detection
proposed by Froba and Ernst [56]. This method introduces a new feature set, illumination invariant Local
Structure Features for object detection. The new feature set are computed from a 3x3 pixel neighborhood
using a modified version of Census Transform [196] for efficient computation. A cascade of classifiers of
four stages is adopted, each of which stands a linear classifier consisting a set of lookup tables of feature
weights. The detection is then carried out by scanning all of possible windows with a fixed size of 22x22
pixels for each scaling factor of 1.25 until the size of the image is less than 22x22. Among the set of
detected responses, the best one is chosen as the target. This face detector runs at 20fps on 640x480 image
sequences and can detect faces with less than 45◦ out-of-plane rotation. For more information please refer
to the original work in [56].

Once the face is detected, the active tracking mode is triggered with two modules: camera control and
tracking.

9.4. Camera Control Module

(a) Outdoor environment with enough lighting

(b) Outdoor environment with low-light and noisy, out-of-focus images

Figure 3.28: Outdoor experiment results

This mode automatically controls the camera to follow the object. The control needs to perform smoothly
and precisely. We use relative control commands with a truncated negative feedback to avoid oscillation.
When sending commands to the camera, we adopt a time sharing strategy in which one pan-tilt command
and one zoom command are packed as one sending group, and two sending groups with one inquiry com-
mand make a control loop. This is because the camera queue is limited and we should not send commands
frequently; otherwise, when the queue is full, later commands are dropped. Moreover, the delay in respond-
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ing to the inquiry command is longer than the others, so a proper time sharing strategy is helpful. Note that
most PTZ cameras carry the commands by mechanical processes which accumulate errors by time. This fact
prevents us from acquiring the current status camera based on the initial status by computing the difference
at every step.

In practice, it is hard to follow the face all of the time, especially when focal length is long, i.e. when the
camera zooms in on the far away face. The FOV of the camera is narrow, and the face can move out of the
image in 2-3 frames. To address this issue, we introduce a one-step-back strategy (as shown in Figure 3.26).
We divide the zoom range in nine steps covering from 1X to 18X. We ignore the further zoom because the
FOV is too narrow at that time. Whenever the face is no longer tracked after k = 20 consecutive frames, the
system zooms out one step back with the hope to reacquire the face again. The system iteratively continues
this process until it can re-acquire the face (using the tracker, not the detector), otherwise the camera gets
back to the widest mode. The system comes back to the home position after missing the target after 10
seconds of no detection. The home position is preset.

9.5. Tracking Module

We use our simplified context tracker described in previous section. We reduce the number of ferns, maxi-
mum distracters and supporters allowed.

9.6. Experiments

We use a Sony PTZ network camera SNC-RZ30N. This camera covers a large range of pan angles (−170◦ →
+170◦ ), tilt angles (−90◦ → +25◦), and a large zoom ratio (25X optical). The camera image stream sent
to the computer is set at 640x480 with medium quality. Our complete system runs at 15fps. The complete
system has been tested in challenging indoor and outdoor environments with real-life situations. Our system
successfully detects a walking person, zooms in on his face and keeps track for a while. For indoor (see
Figure 3.27), it is very challenging due to the face leaving FOV, large viewpoint changes, lighting condition
changes. For outdoor environment, we tackle two different situations: one is in the afternoon with enough
lighting, one is in the evening with low light. The results show that even when the camera cannot focus on
the face with auto-focusing mode, and there is a lot of noise, our system still delivers acceptable results.
Some snapshots are shown in Figure 3.28. It is important to note that, to reduce the overhead of recording
images, we only save the sequences of images after the face is detected and starts to be tracked. For detailed
results, please refer to our supplemental video.

10. Logic Models for Image and Video Tracking

This research was presented at IASTED Conf. on Signal and Image Processing. The work was carried
out by UCLA masters student James H. von Brecht UCLA postdoc Sheshadri R. Thiruvenkadam under
the direction of Professor Tony Chan. In this work, we present a variational method for tracking objects
under occlusion. We utilize prior shape information and the Logic Models of Sandberg and Chan to locate
and segment the object of interest in each frame of the video sequence. In particular, we demonstrate how
incorporating the shape prior via the Logic Models allows us to avoid segmentation local minima which
occur with algorithms that simply additively introduce shape, and how to use the Logic Models within the
context of tracking.

We model the object in the current frame as an affine transformation g of a shape prior, which we
represent via a level set function ψ. We minimize two separate segmentation energies to find both the
appropriate affine registration parameters p and the correct segmentation, represented as the zero level-set
of a function φ. Each energy corresponds to a different logical interpretation of the object in the frame to be
analyzed. Both of the energies take the familiar form

E =

∫
Ω
finH (φ) +

∫
Ω
fout (1−H (φ)) .
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The functions fin,out are image terms which drive the segmentation. The shape prior is incorporated as
a binary image into each term. Since the shape and image terms are coupled, we avoid local minima
problems encountered when shape is introduced additively. The image terms vary depending upon the
correct logical interpretation (AND/OR) of the image to be analyzed, hence we minimize each of the two
energies separately, then select one of the two as the correct segmentation. Lastly, we introduce a means
of automatically determining the correct selection, thus allowing us to utilize the Logic Models within a
tracking algorithm. An example of the algorithm is shown in Figure 3.29.

(a) Frame 2 (b) Frame 30 (c) Frame 55 (d) Frame 83

(e) Frame 2 (f) Frame 21

(g) Frame 48 (h) Frame 77

Figure 3.29: Occlusion tracking from two video sequences

Work by postdoc Berta Sandberg and PhD student Matthew Keegan, under the direction of Tony Chan,
ha the goal of increasing the speed of detection of an object of interest while decreasing false detection
rate. Two sets of algorithms were developed to aid this objective. The first algorithm has been developed to
extract the moving object from background. A logic framework model was developed for multiphase seg-
mentation on images that allows the combination of both intensity of the region where movement occurs,
and the velocity vector field to identify the best possible view of the moving object. The second algo-
rithm implemented was a clustering algorithm that identifies and sorts the shape of objects using calculated
shape features. By extracting the precise shape of the object and identifying its shape features we hope to
differentiate between moving objects of interest and noise from trees blowing in the wind or rain/snow.
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Chapter 4

Sensor Management for Tracking

This chapter is intended to summarize the contributions of the group of Dr. Veeravalli in the theory of
sensor management for tracking made with the support of this grant. Our work focused on two variants of
the sensor management problem, namely, sensor scheduling and sensor sleeping. The former refers to the
scenario where the sensors can be turned on or off at consecutive time steps and the goal is to select the
subset of sensors to activate at each time step. The latter scenario refers to the scenario where an asleep
sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at
the time the sensor goes to sleep based on all the information available to the sensor.

1. Sensor Sleeping

The sensor nodes typically need to operate on limited energy budgets. In order to conserve energy, the
sensors may be put into a sleep mode. However, it is clear that having sleeping sensors in the network that
cannot be woken up could result in tracking errors, and hence there is a tradeoff between the energy savings
and the tracking error that results from the sleeping at the sensors. The sleeping policies at the sensors
should be designed to optimize this tradeoff.

A straightforward approach is to have each sensor enter and exit the sleep mode using a fixed or a
random duty cycle. A more intelligent, albeit more complicated, approach is to use information about the
object trajectory that is available to the sensor from the network to determine the sleeping strategy. In
particular, it is easy to see that the location of the object (if known) at the time when the sensor is put to
sleep would be useful in determining the sleep duration of the sensor; the closer the object, the shorter the
sleep duration should be. We took this latter approach in this work in designing sleeping strategies for the
sensors. All information about the object trajectory is stored at some central unit and is used to determine
sleep times of sensors that come awake. Using a bottom-up approach, we consider different sensing, motion
and cost models with increasing levels of difficulty.

1.1. Simplified Models

Figure 4.1: Object tracking in a
field of sensors (simplified model).

We study the problem of tracking an object that is moving through a net-
work of wireless sensors as shown in Figure 4.1. Each sensor has a lim-
ited range for detecting the presence of the object being tracked, and the
objective is to track the location of the object to within the accuracy of the
range of the sensor. First we considered a simplified model for a sensor
network with n sensors [58]. We assume that the sensing ranges of the
sensors completely cover the region of interest with no overlap. In other
words, the region can be divided into n cells with each cell correspond-
ing to the sensing range of a particular sensor. Each sensor can be in one
of two states: awake or asleep. A sensor in the awake state consumes
more energy than one in the asleep state. However, object sensing can be
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performed only in the awake state.
The movement of the object to be tracked is described by a Markov chain whose state is the current

location of the object to within the accuracy of a cell. However, we also append a special terminal state,
denoted as T , that occurs when the object leaves the network. The statistics for the object movement are
described by a (n+ 1)× (n+ 1) probability transition matrix P such that Pij is the probability of the object
being in state j at the next time step given that it is currently in state i. Let bk denote the location of the
object at time k. We can describe the evolution of the object location stochastically as bk+1 ∼ ebkP , where
ei is a row vector with a 1 at the i-th entry and zero elsewhere.

A central controller keeps track of the state of the network and assigns sleep times to sensors that are
awake. In particular, each sensor that wakes up remains awake for one time unit during which the following
actions are taken: (i) if the object is within its range, the sensor detects the object and sends this information
to the central unit, and (ii) the sensor receives a new sleep time (which may equal zero) from the central
controller. The sleep time input is used to initialize a timer at the sensor that is decremented by one time unit
each time step. When this timer expires, the sensor wakes up. Let rk,` denote the value of the sleep timer
of sensor ` at time k. We call the n-vector rk the residual sleep times of the sensors at time k. Also, let
uk,` denote the sleep time input supplied to sensor ` at time k. We can describe the evolution of the residual
sleep times as

rk+1,` = (rk,` − 1)11rk,` > 0 + uk,`11rk,` = 0 (4.1)

The first term on the right hand side of this equation expresses that if the sensor is currently asleep (the sleep
timer for the sensor is not zero), the sleep timer is decremented by 1. The second term expresses that if the
sensor is currently awake (the sleep timer is zero), the sleep timer is reset to the current sleep time input for
that sensor.

Hence, our system is described through a discrete-time dynamical model, with control input uk and
exogenous input wk. The state of the system at time k is described by xk = (bk, rk) and the state evolution.
Not all of xk is known to the central unit at time k since bk is known only if the object is currently being
tracked. Thus we have a dynamical system with incomplete (or partially observed) state information. If we
denote the observation available to the central unit at time k by zk, then zk = (sk, rk), with

sk =


bk if bk 6= T and rk,bk = 0

E if bk 6= T and rk,bk > 0

T if bk = T
(4.2)

where E denotes an unknown or “erasure” value. The total information available to the control unit at time
k is given by

Ik = (z0, . . . , zk,u0, . . . ,uk−1) (4.3)

with I0 = z0 denoting the initial (known) state of the system. The control input for sensor ` at time k is
allowed to be a function of Ik, i.e.,

uk = µk(Ik) (4.4)

The vector-valued function µk is the sleeping policy at time k.
We identify the two costs present in our tracking problem. The first is an energy cost of c ∈ (0, 1] for

each sensor that is awake. The second is a tracking cost of 1 for each time unit that the object is not tracked.
If the object leaves the network (bk enters the terminal state), we assume the problem terminates and no
further cost is incurred. Thus, the total cost at time k is given by

g(xk) = 11bk 6= T
(

11rk,bk > 0 +

n∑
`=1

c11rk,` = 0

)
(4.5)
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where c is the parameter used to tradeoff energy consumption and tracking errors. The total cost (over a
possibly infinite horizon trajectory) for the system is given by

J(I0, µ0, µ1, . . .) = E

[ ∞∑
k=1

g(xk)

∣∣∣∣∣I0

]
(4.6)

Since g is bounded by (cn + 1) and the expected time till the object leaves the network is finite, the cost
function J well-defined. The goal is to compute the solution to

J∗(I0) = min
µ0,µ1,...

J0(I0, µ0, µ1, . . .) (4.7)

The solution to this optimization problem for each value of c yields an optimal sleeping policy. The opti-
mization problem falls under the framework of partially observable Markov decision process (POMDP).

Partial observability presents a problem since the information for decision-making at time k given in
(4.3) is unbounded in memory. To remedy this, we seek a sufficient statistic for optimization that is bounded
in memory. It is a standard argument that for such an observation model, a sufficient statistic is given by
the probability distribution of the state xk given Ik. Such a sufficient statistic is referred to as a belief state.
Since the residual sleep times portion of our state is observable, the sufficient statistic can be written as
vk = (pk, rk), where pk is a row vector of length n+ 1 that denotes the probability distribution of bk given
Ik. Mathematically, we have

pk,` = P(bk = `|Ik) (4.8)

We can write the evolution of pk as

pk+1 = eT 11bk+1 = T + ebk+1
11rk+1,bk+1

= 0 + [pkP ]{j:rk+1,j>0} 11rk+1,bk+1
> 0 (4.9)

where rk+1 is defined through (4.1) and bk+1 (conditioned on pk) is distributed as

bk+1 ∼ pkP (4.10)

To understand (4.9), note that if the object is observed at time k+1, pk+1 becomes a point-mass distribution
with all the probability mass concentrated at bk+1. If the object is not observed, we eliminate all probability
mass at sensors that are awake (since the object is known to not be at these locations) and renormalize. Thus,
all information from observations is incorporated.

We can then write our policy and cost function in terms of the sufficient statistic. and the optimal cost
defined in (4.7) becomes

J∗(v0) = min
µ0,µ1,...

J0(v0, µ0, µ1, . . .) (4.11)

There exists a stationary optimal policy for our problem (i.e. µ0 = µ1 = · · · = µ∗). Such a policy and the
optimal cost J∗ can be found by solving the Bellman equation given as

J(v) = min
µ

E [g(x1) + J(v1)|v0 = v,u0 = µ(v)] (4.12)

with µ∗ being the minimizing value of µ in this equation. The state space for this problem consists of pk,
which is uncountably infinite, and rk, which is countably infinite. Thus, we must either have an analytical
solution for the cost function at each iteration (which is not possible given the complexity of the problem) or
we must quantize and truncate the state space so that there are a finite number of states. Of course, restricting
the infinite state space to a finite state space will lead to some loss of optimality. Even with the restriction to a
finite state space, the complexity of value iteration remains intractable except for the most trivial cases. This
is because the state space grows exponentially with the number of sensors. For example, even with seven
sensors, a maximum sleep time of 10, and a probability mass function quantized to multiples of 0.1, there
are about 109 possible states vk. Hence, finding an optimal solution to this problem is not feasible. During
the course of this MURI program we identified other approaches which were shown to be near-optimal.
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1.1.1. Approximate Sleeping Policies

Much of the complexity of this problem stems from the complicated evolution of pk given in (4.9). In
deriving suboptimal solutions to our problem, we make assumptions about the observations that will be
available in the future. These assumptions allow us to simplify the evolution in (4.9) considerably. The
result is that the optimization problem easily separates into n simpler problems, one for each sensor. In
each of these simpler problems, we are able to eliminate the residual sleep times rk from the state since the
only times of interest will be those when the sensor comes awake. It is then possible to solve each of the n
simpler problems to find a cost function and policy.

We now define some additional notation. Under each assumption, we refer to an optimal cost and policy
as J∗ and µ∗. These functions may written in terms of the state (J∗(v), µ∗(v)) or the component parts of
the state (J∗(p, r), µ∗(p, r)). The optimal cost and policy for the simpler problem for sensor ` will be J∗(`)

and µ∗(`) respectively. These functions are written in terms of the p portion of the state (J∗(`)(p), µ∗(`)(p)).
Define J∗(`)(p, r) for r > 0 as

J∗(`)(p, r) =
r−1∑
j=1

[
pP j

]
`

+
n∑
i=1

c [pP r]i + E
[
J∗(`)(pr)|p0 = p

]
(4.13)

We showed for each assumption that with these definitions, J∗ defined through

J∗(v) = J∗(p, r) =
n∑
`=1

J∗(`)(p, r`) (4.14)

is a solution to (4.12). It is also shown that if µ∗(`)(p) is set to the minimizing value of u for all p and for
all ` ∈ {1, . . . , n}, then µ∗ defined through

µ∗(v) = µ∗(p, r) = [µ∗(1)(p), µ∗(2)(p), . . . , µ∗(n)(p)] (4.15)

is the minimizing policy in (4.12). In other words, the sleep times for each sensor can be chosen indepen-
dently as a function of p alone.

1.1.2. FCR Solution

To generate the first cost reduction (FCR) solution, we assume that we will have no future observations. In
other words, we are replacing (4.9) with

pk+1 = pkP (4.16)

Note that this does not mean that it will be impossible to track the object; we are simply making an assump-
tion about the future state evolution in order to generate a sleeping policy. We can solve the equation

J (`)(p) = min
u

 u∑
j=1

[
pP j

]
`

+
n∑
i=1

c
[
pP u+1

]
i
+ J (`)(pP u+1)

 (4.17)

to find the cost function and policy. It is easy to verify that

J∗(`)(p) =

∞∑
j=1

min

{[
pP j

]
`
,

n∑
i=1

c
[
pP j

]
i

}
(4.18)

is indeed a solution to (4.17). In other words, at each time step we incur a cost that is the minimum of the
expected tracking cost at sensor ` and the expected energy cost at sensor `. Define the set U(p) as

U(p) =

{
u :
[
pP u+1

]
`
≥

n∑
i=1

c
[
pP u+1

]
i

}
(4.19)
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It is then easily verified that the per-sensor policy µ∗(`)(p) has the form

µ∗(`)(p) = min
u∈U(p)

u (4.20)

More simply, the policy is to come awake at the first time such that the expected tracking cost exceeds the
expected energy cost. This is why this solution is called the first cost reduction solution.

1.1.3. QMDP Solution

A QMDP solution is one in which it is assumed that the partially observed state becomes fully known after
a control input has been chosen. In our problem, this means assuming that we will have perfect future
observations, i.e., the location of the object will be known in the future. In other words, we are replacing
(4.9) with

pk+1 = ebk+1
(4.21)

Note that this does not mean that it will be impossible to incur tracking errors; we are simply making an
assumption about the future state evolution in order to generate a sleeping policy. We can solve the equation

J (`)(p) = min
u

 u∑
j=1

[
pP j

]
`

+

n∑
i=1

c
[
pP u+1

]
i
+

n∑
i=1

[
pP u+1

]
i
J (`)(ei)

 (4.22)

to find the cost function and policy.
Clearly, if we can solve (4.22) for p = eb for all b ∈ {1, . . . , n}, then it is straightforward to find

the solution for all other values of p. We therefore concern ourselves with finding values of J∗(`)(eb) and
µ∗(`)(eb) that satisfy (4.22) for all b ∈ {1, . . . , n}. This can be achieved through policy iteration. Note that
for the QMDP solution, we are assuming more information than is actually available. Thus, the cost function
obtained under the QMDP is a lower bound on optimal performance.

1.1.4. Point Mass Approximations

The suboptimal policies derived in the preceding sections are considerably easier to compute than the opti-
mal policy and can be computed on-line after some initial off-line computation has been completed. How-
ever, such on-line computation requires sufficient processing power and could introduce delays. It would be
convenient if the suboptimal µ∗ could be precomputed and stored either at the central controller or distributed
across the sensors themselves. The latter option is particularly attractive since it allows for distributed im-
plementation. But the set of possible distributions p is potentially quite large — even if quantization is
performed — and could make the storage requirements prohibitive. To make the storage requirements feasi-
ble, we considered approximating pwith a point mass distribution. The number of sleep times to be stored is
then only n per sensor. We considered two options for the placement of the unit point mass when computing
the sleep time for sensor `: (i) the centroid of p, and (ii) the nearest point to sensor ` on the support of p.
Note that the latter option allows for the implementation of policies without detailed information about the
statistics of the random walk – only the support of the random walk is required.

1.1.5. Numerical Results

In this section, we show some results that illustrate the performance of the policies we derived in previous
sections. We begin with simulation results for one-dimensional sensor networks. In each simulation run,
the object was initially placed at the center of the network and the location of the object was made known to
each sensor. A simulation run concluded when the object left the network. The results of many simulation
runs were then averaged to compute an average tracking cost and an average energy cost.

We present results for a one-dimensional network with 61 sensors where the object can move anywhere
from three positions to the left to three positions to the right at each time step, with the object movement
being uniformly distributed on these seven positions.

In Figure 4.2, we show the tradeoff curves between energy cost and tracking cost. From these data,
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Figure 4.2: Energy-Tracking tradeoff curves.

we see that the QMDP policy outperforms the FCR policy, although the difference does not appear as large.
Note that the difference between the performance of the QMDP policy and the lower bound on optimal
performance becomes small as the number of tracking errors becomes small. This makes sense since when
there are few tracking errors, the QMDP assumption (that we will know the object location in the future)
becomes realistic. In Figure 4.2(b), we explore the impact of using the point mass approximations on the
performance of the QMDP policy. Four curves are shown in each figure. The first two are the lower bound and
QMDP tradeoff curves already seen. The third and fourth curves are the tradeoff curves for the QMDP policy
using the centroid and nearest point point mass approximations respectively. It can be seen that there is
indeed some loss in performance when using point mass approximations, but this loss becomes small as the
number of tracking errors becomes small. This makes sense since when tracking errors are infrequent, the
object location is usually known exactly and so the distribution is usually already a point mass distribution.

For the moment, consider the traditional duty cycle scheme where each sensor is awake in a fraction π
of the time slots. As π is varied, we achieve a tradeoff curve that is a straight line between the points (0, 1)
and (n, 0) (where n is the appropriate number of sensors). When compared with this policy, the schemes
we have proposed result in significant improvement as seen in Figure 4.3(a). In Figure 4.3(b), we consider
a two-dimensional network. The network considered is a 11 × 11 grid (121 nodes). The movement of the
object is best described by stating that at each time step the object starts at the center of a 3 × 3 grid and
moves to any of the nine spaces on that grid with equal probability. It is seen that the results of Figure 4.3
are similar to those already seen in Figure 4.2.

1.2. Generalized Models

In this section we summarize extensions to the work presented in Section 1.1. We extend our analysis to
more generalized models for object movement, object sensing, and tracking cost [60]. We allow the number
of possible object locations to be different from the number of sensors. The number of possible object
locations can even be infinite to model the movement of an object on a continuum. Moreover, the object
sensing model allows for an arbitrary distribution for the observations given the current object location,
and the tracking cost is modeled via an arbitrary distance measure between the actual and estimated object
location.

Not surprisingly, this generalization results in a problem that is much more difficult to analyze. Our
approach is to build on the policies developed for the simplified model of Section 1.1. The design of those
policies relied on the separation of the problem into a set of simpler subproblems. In [58], we have shown
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Figure 4.3: Comparison to conventional duty cycle approach and tradeoffs for a 2-D network.

that under an observable-after-control assumption, the design problem lends itself to a natural decomposi-
tion into simpler per-sensor subproblems due to the simplified nature of the tracking cost structure. Unfor-
tunately, this does not extend to the generalized cases we consider herein. However, based on the intuition
gained from the structure of the solution in the simplified case, we artificially separate our problem into a set
of simpler per-sensor subproblems. The parameters of these subproblems are not known a priori due to the
difficulties in analysis. However, we use Monte Carlo simulation and learning algorithms to compute these
parameters. We characterize the performance of the resulting sleeping policies through simulation. For the
special case of a discrete state space with continuous Gaussian observations, we derive a lower bound on
the optimal energy-tracking tradeoff which is shown to be loose at the high tracking error regime, but is
reasonably tight for the low tracking error region.

We extend the definitions presented in Section 1.1 to account for the new models. We denote the set of
possible object locations as B such that |B| = m + 1 where the (m + 1)-th state represents the absorbing
terminal state that occurs when the object leaves the network. If B is not a finite set then m is∞. We define
a kernel P such that P (x,Y) is the probability that the next object location is in the set Y ⊂ B given that
the current object location is x. Suppose p is a probability measure on B such that p(X ) for X ∈ B is the
probability that the state is in X at the current time step. Then the probability that the state will be in Y after
t time steps in the future is given by

(pP t)(Y) ≡
∫
B
p(dx)P t(x,Y) (4.23)

This defines the measure pP t which depends on both the prior p and the transition Kernel P . Also, let δx
denote a probability measure such that δx(A) = 1 if x ∈ A, and δx(A) = 0 otherwise. Conditioned on
the object state bk, the future state bk+1 has a distribution δbkP . This defines the evolution of the object
location. For a discrete state space this was simply the probability mass function defined by the bk-th row
of a transition matrix P .

To define the tracking cost, we first define the estimated object location at time k to be b̂k. We can think
of b̂k as an additional control input that is a function of Ik, i.e., b̂k = βk(Ik). Since b̂k does not affect the
state evolution, we do not need past values of this control input in Ik. The tracking cost is a distance measure
that is a function of the actual and estimated object locations and is written as d(bk, b̂k). We assume that d
is a bounded function on B × B. Two examples of distance measures we might employ are the Hamming
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cost (if the space B is finite), i.e.,

d(bk, b̂k) = 11b̂k 6= bk (4.24)

and the squared Euclidean distance (if the space B is a subset of an appropriate vector space), i.e.,

d(bk, b̂k) = ‖b̂k − bk‖22 (4.25)

Recall that the input b̂k does not affect the state evolution; it only affects the cost. Therefore, we can
compute the optimal choice of b̂k, given by β∗k(Ik), using an optimization minimizing the tracking error over
a single time step. We can thus write

β∗k(Ik) = arg min
b̂

E
[
d(bk, b̂k)

∣∣∣Ik] (4.26)

Remembering that once the terminal state is reached no further cost is incurred, we can write the total
cost for time step k as

g(bk, Ik) = 11bk 6= T
(
d (bk, β

∗
k(Ik)) +

n∑
`=1

c11rk,` = 0

)
(4.27)

The infinite horizon cost for the system is given by

J(I0, µ0, µ1, . . .) = E

[ ∞∑
k=1

g(bk, Ik)

∣∣∣∣∣ I0

]
(4.28)

The solution to an optimization problem equivalent to the one in 4.12 for each value of c yields an optimal
sleeping policy. The task of recursively computing pk for each k is a problem in nonlinear filtering. In other
words, pk+1 can be computed using standard Bayesian techniques as the posterior measure resulting from
prior measure pP and observations sk+1. We can then write our dynamic programming problem in terms
of the sufficient statistic and solve for the optimal policy µk(pk, rk). Since an optimal solution could not
be found for the simpler problem considered in Section 1.1, we immediately turn our attention to finding
suboptimal solutions to the generalized version of the problem.

In general, the cooperation among the sensors may be difficult to analyze and understand. Furthermore,
unlike the simple model, the tracking cost may not be easily written as a sum across the sensors. To generate
suboptimal solutions we artificially write the problem as a set of subproblems that can be solved using similar
techniques. The tracking cost expressions (which are a function of the sleeping actions of the sensors) in
these subproblems will be left as unknowns. To determine appropriate values for these tracking costs, we
either perform Monte Carlo simulations before tracking begins or use data gathered during tracking. The
intuition is that if the resultant tracking cost expressions capture the “typical” behavior of the actual tracking
cost, then our sleeping policies should perform well.

Our approach has two main ingredients. First, we make assumptions about the observations that will be
available to the controller at future time steps. To generate sleeping policies, we assume that the system is
either perfectly observable or totally unobservable after control. Hence, we define approximate recursions
with special structure as surrogates for the optimal value function. Second, we devise different methodolo-
gies to evaluate suitable tracking costs whereby we capture the effect of each sensor on the overall tracking
cost. Writing the combined tracking cost as the sum of independent contributions of different sensors (with
respect to some baseline) allows us to write the Bellman equation as the sum of per-sensor recursions. In-
stead of solving the exact Bellman equation, we alternatively solve n simpler Bellman equations to find
per-sensor policies and cost functions. The overall policy is then the per-sensor policies applied in parallel.

We denote by J (`) the cost function of the `-th sensor approximate subproblem. We define T∆(b, `) to
be the increase in tracking cost due to not waking up sensor ` at time k given that bk−1 = b. This is meant
to capture the contribution of the `-th sensor to the total tracking cost. Next we define our approximations.
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1.2.1. QMDP

Based on the structure presented in Section 1.1, we can readily define a QMDP per-sensor Bellman equation
analogous to the one in (4.22)

J (`)(p) = min
u

u−1∑
j=0

∫
B−T

T∆(b, `) (pP j)(db) +

∫
B−T

(
c+ J (`)(δb)

)
(pP u+1)(db)

 (4.29)

The first summation in the Right Hand Side (R.H.S.) of (4.29) corresponds to the expected tracking cost
incurred by the sleep duration u of sensor `. The second term consists of: (i) the energy cost incurred as
the sensor comes awake after its sleep timer expires (after u+ 1 time slots); and (ii) the cost to go under an
observable-after-control assumption (hence the belief state is δb).

We cannot find an analytical solution for (4.29). However, note that if we can solve (4.29) for p = δb for
all b, then it is straightforward to find the solution for all values of p. Thus, given a function T∆, (4.29) can
be solved through standard policy iteration, but only if B is finite.

1.2.2. First Cost Reduction (FCR)

Similarly, we define a First Cost Reduction (FCR) Bellman equation analogous to the one in (4.30) as

J (`)(p) = min
u

u−1∑
j=0

∫
B−T

T∆(b, `) (pP j)(db) + c

∫
B−T

(pP u+1)(db) + J (`)(pP u+1)

 (4.30)

In this case, it is assumed that we will have no future observations. In other words, we define the belief
evolution as pk+1 = pkP . Given a function T∆, it is easy to verify that the solution to (4.30) is

J (`)(p) =
∞∑
j=0

min

{∫
B−T

T∆(b, `) (pP j)(db), c

∫
B−T

(pP j+1)(db)

}
(4.31)

and the associated policy is to choose the first value of u such that

c

∫
B−T

(pP u+1)(db) ≥
∫
B−T

T∆(b, `) (pP u)(db), (4.32)

In other words, the policy is to come awake at the first time the expected tracking cost exceeds the expected
energy cost where the tracking cost is defined based on T∆ (to be determined).

The solutions to the per-sensor Bellman equations in (4.29) and (4.30) define the QMDP and FCR policies
for each sensor, respectively. Note that, unlike the simplified case, the solution to the QMDP recursion does
not necessarily provide a lower bound on the optimal value function since the employed tracking cost is not
a lower bound on the actual tracking cost. Later, we present a lower bound on the optimal energy-tracking
tradeoff for discrete state spaces with Gaussian Observations. The remaining task was to identify appropriate
values of T∆(b, `) for all b 6= T and for all `. This is the subject of the next two sections.

1.2.3. Non-learning Approach

For now, suppose that B is a finite space. Suppose bk−1 = b. To generate T∆(b, `) for a particular `, we
first assume a “baseline” behavior for the sensors, i.e., we make an assumption about the set of sensors that
are awake at time k given that bk−1 = b. We consider two possibilities: (i) That all sensors are asleep; (ii)
That the set of sensors awake is selected through a greedy algorithm. In other words, the sensor that causes
the largest decrease in expected tracking cost is added to the awake set until any further reduction due to a
single sensor is less than c. Starting with this set of awake sensors, the value of T∆(b, `) is then computed
as the absolute difference in expected tracking cost incurred by changing the state of sensor `. Monte Carlo
simulation can be used to evaluate the change in expected tracking cost.
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If B is not finite, then a parameterized version of T∆ can be computed instead. We choose m̃ elements
of B−T and evaluate T∆ at these points. The value of T∆ at all other values of b ∈ B−T can be computed
via an interpolation algorithm. Recall that only an FCR policy is appropriate in the infinite state case, since
solving the QMDP Bellman equation for an infinite number of point mass distributions is infeasible.

1.2.4. Learning Approach

Next, we describe an alternative learning-based approach. For ease of exposition, suppose that B is a finite
space. Then our probability measure pk can be characterized by a probability mass function. We refer to
this probability mass function as pk (a row vector). Define âk,` to be the approximated expected increase in
tracking cost due to sensor ` sleeping at time k as

âk,` =
∑
b 6=T

pk−1(b)T∆(b, `) (4.33)

Ideally, we would like this approximation to be equal to the actual expected increase in tracking cost due
to sensor ` sleeping. Unfortunately, we do not have access to actual tracking costs at time k since bk is not
known exactly. However, we do have access to pk, rk, and pk−1. It is therefore possible to estimate the
tracking cost as ∫

B
d(b, β∗(pk))pk(db) (4.34)

For example, if Hamming cost is being used, then we can estimate the tracking cost as 1 −maxb pk({b}),
and if squared Euclidean distance is being used we can estimate the tracking cost using the variance of the
measure pk. Next we describe how we learn T∆ by solving a least squares problem.

Determining an estimate of the increase in the tracking cost due to the sleeping of sensor ` at time k,
denoted ak,`, depends on the value of rk,`. If rk,` = 0, we ignore the observation from sensor ` and generate
a new version of pk called p′k. We can compute ak,` as

ak,` =
∑
b 6=T

p′k(b)d(b, β∗(p′k))−
∑
b6=T

pk(b)d(b, β∗(pk)) (4.35)

If on the other hand rk,` > 0, we first generate an object location b′k according to pk and then generate an
observation according to the probability measure σb′k . This observation is used to generate a new distribution
p′k from pk. Then we compute ak,` as

ak,` =
∑
b 6=T

pk(b)d(b, β∗(pk))−
∑
b6=T

p′k(b)d(b, β∗(p′k)) (4.36)

We now have an approximation sequence âk,` and an observation sequence ak,`. At time k− 1, our goal
is to choose T∆ to minimize

E
[
(âk,` − ak,`)2

]
(4.37)

We apply the Robbins-Monro algorithm [135], a form of stochastic gradient descent, to this problem in order
to recursively compute a sequence of T∆ that will hopefully solve this minimization problem for large k.
The update equation is

T∆
k (b, `) = T∆

k−1(b, `)− 2αk11b 6= T pk−1(b)(âk,` − ak,`) (4.38)

where αk is a step size. Note that 11b 6= T pk−1(b) is the gradient of âk,` with respect to T∆(b, `).
Using a constant step size in our simulations, we could only observe small oscillations in the values of

T∆. If B is not finite, then we can again parameterize T∆. The Robbins-Monro algorithm can be applied in
this context as well, although the gradient expressions will depend on the type of interpolation used.
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1.2.5. A Lower Bound

Deriving a lower bound is generally difficult for the considered problem. However, we derived a lower
bound for the special case of a discrete state space with Gaussian observations. The idea is to combine the
observable-after-control assumption with a separable lower bound on the tracking cost as we demonstrate in
what follows. When awake, the sensors observations are Gaussian, i.e.,

sk,` ∼ N
(

V

(ν` − bk)2 + 1
, 1

)
(4.39)

where ν` is the location of sensor ` and V some positive constant.
First, the following Lemma provides a lower bound on the expected tracking cost.

Lemma 1.1. Given the current belief pk, an action vector uk, the current residual sleep times vector rk, the
Gaussian observation model in (4.39), the Hamming cost definition in (4.24), and a mean received signal
strengthmj when the target is at state j, the expected tracking cost is lower bounded by

E[d(b̂k+1, bk+1)|pk,uk] =

m∑
i=1

pk(i)

m∑
j=1

p(bk+1 = j|bk = i) max
k 6=j

Q

(
dkj
2

+
ln

πj
πk

dkj

)
(4.40)

wherem is the size of the discrete state space, i.e., the number of possible object locations, d2
kj =

∆mT
kj∆mkj

σ2 ,
∆mkj = mk −mj , and Q(.) is the normal distribution Q-function.

Since the mean received signal strength depends on whether the sensors are awake or asleep, the distance
dkj is a function of the next step residual sleep vector rk+1. To highlight this dependence, we will sometimes
use the notation dkj(r) when needed.

The next step is to use this result to compute a separable bound on the tracking error, which combined
with an observable-after-control assumption would lead to a decomposable lower bound on the optimal value
function. The idea is to separate out the contribution of every sensor by assuming that every other sensor
is awake and study the tracking error when that sensor is awake or asleep. Our next Lemma establishes a
separable lower bound on the expected tracking cost.

Lemma 1.2. The expected tracking cost is lower bounded by

E[d(b̂k+1, bk+1)|pk,uk, rk] ≥
n∑
`=1

λ`(pk)

{
11rk+1,` = 0

m∑
i=1

pk(i)T0(p, i, `) + 11rk+1,` > 0
m∑
i=1

pk(i)T (p, i, `)

}
(4.41)

where

T0(p; i, `) ,
m∑
j=1

p(bk+1 = j|bk = i) max
k 6=j

Q

dkj(0)

2
+

ln
[pP ]j
[pP ]k

dkj(0)


T (p; i, `) ,

m∑
j=1

p(bk+1 = j|bk = i) max
k 6=j

Q

dkj(0−`)
2

+
ln

[pP ]j
[pP ]k

dkj(0−`)


where 0 is the all zero vector and 0−` denotes a vector of length n with all entries equal to zero except for
the `-th entry which can be anything greater than 0.

Intuitively, T0(p; i, `) represents the contribution of sensor ` to the total expected tracking cost when the
underlying state is i, the belief is p and when all sensors are awake. On the other hand T (p; i, `) is the `-th
sensor contribution when it is asleep and all the other sensors are awake.

We can readily state a lower bound on the optimal value function in the following Theorem.
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Theorem 1.1. A lower bound on the optimal value function at belief state eb can be obtained as a solution
to the following optimization problem

J(eb) = max
Λ(c)

n∑
`=1

min
ub`

{
u−1∑
j=0

m∑
i=1

[ebP
j ]iλ(i, `)T (i, `) +

m∑
i=1

[ebP
u]iλ(i, `)T0(i, `)

+ c
m∑
i=1

[ebP
u+1]i +

m∑
i=1

[ebP
u+1]iJ

`(ei)

}
(4.42)

subject to Λ1n = 1m

where 1m is a column vector of all ones of length m. The matrix Λ is defined for every value of c, where
Λ(c) is an m × n matrix with the (i, `) entry equal to λ(i, `), i.e., Λ(c) = {λ(i, `)}. The quantities T (i, `)
and λ(i, `) are shorthand for T (ei; i, `) and λ`(ei), respectively. The inner minimization is over the control
action ub` for sensor ` given a belief state eb.

A closed form solution for (4.42) cannot be obtained, and hence, we solve for J(eb) numerically. First,
we fix Λ and use policy iteration to solve for the control of each sensor at each state. Then, we change Λ
and repeat the process. The envelope of the generated value functions (corresponding to different instants
of Λ) is hence a lower bound on the optimal value function.

1.2.6. Numerical Results

In this section, we show some simulation results illustrating the performance of the described policies. For
the non-learning policies, the value of T∆(b, `) for each b and ` was generated using 200 Monte Carlo
simulations. The results of 50 simulation runs were averaged when plotting the curves. For the learning
policies, the values for T∆ were initialized to those obtained from the non-learning approach using greedy
sensor selection as a baseline. A constant step size of 0.01 was used in the learning algorithm.

We first consider a simple network that we term Network A. This is a one-dimensional network with 41
possible object locations where the object moves with equal probability either one to the left or one to the
right in each time step. There is a sensor at each of the 41 object locations that makes (when awake) a binary
observation that determines without error whether the object is at that location. Hamming cost is used for
the tracking cost.

For Network A, we illustrate the performance of the QMDP versions of our policies in Figure 4.4(a) and
the FCR versions of our policies in Figure 4.4(b).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

Tr
ac

kin
g 

Er
ro

rs
 p

er
 U

ni
t T

im
e

 

 
Asleep
Greedy
Learning

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

Tr
ac

kin
g 

Er
ro

rs
 p

er
 U

ni
t T

im
e

 

 
Asleep
Greedy
Learning

(a) (b)

Figure 4.4: Tradeoff curves for Network A: (a) QMDP policies; (b) FCR policies
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Figure 4.5: Tradeoff curves for Network B and a lower bound: (a) QMDP policies; (b) FCR policies

The curves labeled “Asleep” are for the nonlearning approach for computing T∆ where we assume
that all sensors are asleep as a baseline. The curves labeled “Greedy” are for the nonlearning approach for
computing T∆ where we use a greedy algorithm to determine our baseline. The curves labeled “Learning”
employ our learning algorithm for computing T∆. From the tradeoff curves, it is apparent that using the
learning algorithm to compute T∆ results in improved performance. A close inspection of Figures 4.4(a)
and 4.4(b) will reveal that the QMDP policies perform somewhat better than their FCR counterparts. This is
consistent with what was observed earlier.

Table 4.1: Object movement for Network B.
Change in Position 0 1 2 3
Probability 0.3125 0.2344 0.0938 0.0156

We then consider a new one-dimensional network termed Network B. The possible object locations
are located on the integers from 1 to 21. The object moves according to a random walk anywhere from
three steps to the left to three steps to the right in each time step. The distribution of these movements is
given in table 4.1. The change in position indicate movement by a corresponding number of steps to the
right or to the left. There are 10 sensors in this network so that m 6= n. The locations of the sensors are
given in Table 4.2 and awake sensors make Gaussian observations as in (4.39). Results for the QMDP and

Table 4.2: Sensor locations for Network B.
Sensor 1 2 3 4 5 6 7 8 9 10
Location 1.36 1.61 3.91 8.09 11.96 13.39 13.52 13.66 16.60 18.68

FCR versions of our policies are shown in Figures 4.5(a) and 4.5(b), respectively. The results confirm the
same general trends observed for Network A. The figures also show our derived lower bound on the energy-
tracking tradeoff. Not surprisingly, the lower bound is particularly loose at the high tracking cost regime,
yet the gap is reasonably small for the low tracking error region. This is expected since the lower bound uses
an all-awake assumption to lower bound the contribution of each sensor to the tracking error. However, it is
worth mentioning that we can exactly compute the saturation point for the optimal scheduling policy, which
matches the saturation limit of the shown curves, since every policy has to eventually meet the all-asleep
performance curve when the energy cost per sensor is high. At that point, all sensors are put to sleep and
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hence the target estimate can only be based on prior information. The small gap at the low tracking error
regime combined with the aforementioned saturation effect highlight the good performance of our sleeping
policies.

Our results are not restricted to 1-D networks but easily extend to 2-D networks. Namely, Figure
4.6(right) shows the energy-tracking tradeoff of the QMDP and FCR policies for the 2-D network of Figure
4.6(left) with continuous observations and Hamming cost. To demonstrate that our techniques can be applied
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Figure 4.6: (Left) 2-D network with 17 sensors (stars) and 25 possible object locations (squares). (Right)
Energy-Tracking tradeoff of the QMDP and FCR sleeping policies for a 2D network with continuous obser-
vations and Hamming cost.

to an object that moves on a continuum, we define a new network, Network C. This network is identical to
Network B except for two changes.
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Figure 4.7: Tradeoff curves for FCR policies for Net-
work C.

First, the object can take locations anywhere on the
interval [1, 21]. Second, the object moves accord-
ing to Brownian motion with the change in posi-
tion between time steps having a Gaussian distribu-
tion with mean zero and variance 1. As mentioned
earlier, only FCR policies can be generated for this
type of network. Values of T∆ were computed for
each integer-valued object location on [1, 21] and
linear interpolation used to compute values of T∆

for other object locations. Since continuous dis-
tributions cannot be easily stored, particle filtering
techniques were employed. The number of parti-
cles used was 512 and resampling was performed at
each time step. Tradeoff curves for Network C are
shown in Figure 4.7. Although the tradeoff curves
are less smooth than before, this figure illustrates
performance trends similar to those already seen.
The reason the curves are not as smooth is that occasionally the particle filter would fail to keep track
of the distribution with sufficient accuracy. This would cause the network to lose track of the object and
cause abnormally bad tracking for that simulation run.

90



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

1.3. Sensor Sleeping for Multi-target Tracking

We extend our analysis to the tracking of multiple objects [59]. A discussion of the tracking of multiple
objects, often termed multitarget tracking (MTT), can be found in [92]. Tracking multiple objects is not
a simple extension of tracking a single object due to the data association problem. This problem arises
whenever the identity of the objects cannot be determined from the observations. Thus, even if all locations
where objects are located are known exactly, it may not be known which location corresponds to which
object. This uncertainty leads to an explosion in the set of possibilities that must be considered and makes
optimal solution difficult. Suboptimal tracking algorithms are then needed. We therefore formulate a design
problem wherein we keep track of the full joint distribution for the object locations. This approach is optimal
but can quickly become intractable for large numbers of objects. Our simulation results will focus on the
two-object case to make computation as simple as possible. However, most of our analysis applies to the
general q-object case and we indicate how our solutions scale with increasing number of objects. The results
of our work are a set of suboptimal sleeping policies. These policies are compared with lower bounds on
optimal performance that we derived in the course of our analysis. Our simulation results show how our
suboptimal policies compare with optimal performance. Our policies also perform significantly better than
naive approaches that do not use information about the locations of the objects. Furthermore, one of our
policies uses only information about the marginal distributions of the objects and thus scales well with
increasing numbers of objects and can be used in concert with suboptimal tracking algorithms.

We stick to the simplified model of Section 1.1 with non-overlapping sensing regions. An awake sensor
can only detect whether one or more objects is within its range and can detect neither the exact number of
objects present nor which objects are present.

We are interested in tracking q objects that move independently according to their individual first-order
Markov models. We will write the combined state of the q objects as a vector of length q. There are (n+1)q

possible states for this vector. The state T ≡ [n + 1, . . . , n + 1] is the terminal state that occurs when all
objects have left the network. Once this state is reached, no further cost is incurred.

If we denote the observation available to the central unit at time k by zk, then we have zk = (sk, rk),
where sk is a (n+ 1)-vector of observations with

sk,` =


0 if rk,` = 0 and no objects are at location `
1 if rk,` = 0 and one or more objects are at location `
E if rk,` > 0

(4.43)

where E is an erasure that provides no information. We can further decompose tracking error into two
components. The first component is observation error that occurs when we fail to observe a particular object.
The second component is data association error that occurs when the objects have been misidentified. To
perform the object identification, we define the vector of estimated object locations at time k to be b̂k. We
can think of b̂k as an additional control input that is a function of Ik, i.e.

b̂k = βk(Ik) (4.44)

We combine observation and data association errors by defining a tracking error to have occurred when
either an observation error or a data association error has occurred. A cost of 1 is incurred for each tracking
error. Thus the tracking cost can be written as

q∑
i=1

(
1− 11rk,bk,i = 011b̂k,i = bk,i

)
(4.45)

Recall that the b̂k input does not affect the state evolution; it only affects the cost. We can therefore compute
the optimal choice of b̂k, denoted as β∗k(Ik), using an optimization minimizing the tracking error over a
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single time step. We can thus write

β∗k(Ik) = arg min
b̂

E

[
q∑
i=1

(
1− 11rk,bk,i = 011b̂i = bk,i

) ∣∣∣Ik
]

(4.46)

we can write the total cost for time step k as

g(bk, Ik) =11bk 6= T
(

n∑
`=1

c11rk,` = 0 +

q∑
i=1

(
1− 11rk,bk,i = 011β∗k(Ik) = bk,i

))
(4.47)

Since g is bounded by (cn + q) and the expected time till the object leaves the network is finite, the cost
function J is well-defined.

The evolution of pk is difficult to write mathematically, but it is a standard nonlinear filtering operation.
One example of a distribution update is shown in Figure 4.8.
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Figure 4.8: An example of a distribution update for q = 2 and n = 9. In each subfigure, a joint distribution
for the objects is shown. In (a), it is known that one object is located at position 3 and one is located
at position 6. In (b), the joint distribution at time k + 1 before incorporating observations is shown. In
generating (c), we suppose that sensors 1, 5, 6, and 8 are awake and have failed to observe the object. The
distribution in (c) is the one that results from incorporating these observations.

For notational convenience, we also define

pk,i(b) =
∑
b′:b′i=b

pk(b
′) (4.48)

In other words, pk,i is the marginal distribution for object i. Each component of the vector valued function
β∗k can be chosen according to

β∗k,i(pk, rk) = arg max
b̂

11rk,b̂ = 0pk,i(b̂) (4.49)

In other words, for each object we select the estimated object location from among the locations where a
sensor is awake. From these locations, we select the one with the largest value of the marginal distribution
for that object. Note that β∗k has the same form for every k so we can drop the subscript and refer to β∗k
as β∗. Our approach to generating suboptimal solutions is similar to that used earlier. Namely, we make
unrealistic assumptions that greatly simplify the evolution of pk. These assumptions also allow the tracking
and energy costs to be written as a sum of costs, one for each sensor. The result is that the problem then
separates into a set of n simpler subproblems, one for each sensor, that can be more easily solved.
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The QMDP policy is obtained as a solution of the per-sensor Bellman equation for sensor `

J (`)(p) = min
u

∑
b6=T

(
u∑
j=1

(pP j)(b)

q∑
i=1

11bi = `+ c(pP u+1)(b) + (pP u+1)(b)J (`)(δb)

)
(4.50)

Note that this assumption implies that there will be no future data association errors and thus the only
tracking costs present in designing this policy are observation errors.

We also define an FCR policy that is to select the first value of u such that

q∑
i=1

∑
b:bi=`

(pP u+1)(b) ≥
q∑
i=1

∑
b:bi 6=n+1

c

q
(pP u+1)(b) (4.51)

The lower bound that results from the QMDP policy is likely to be loose when data association errors
dominate the tracking cost. Hence, we designed a QMDP -like policy that, instead of assuming the state is
known, assumes that

• at the current time step, after selecting sleep times all sleeping sensors will be allowed to make obser-
vations (with no energy cost), and

• at future time steps, the distribution for the object location will evolve as if all sensors are awake.

This gives rise to the term All Awake (AA policy). Note that the AA assumption is like assuming we will
have “perfect observations.” However, this does not imply perfect knowledge of the state due to the presence
of data association errors. Note that since we are assuming more information than is actually available, the
AA assumption does yield a lower bound on optimal performance. Due to complexity issues, we only
designed the AA policy for the q = 2 case.

The advantage of the AA assumption is that it allows us to considerably simplify the state space for pk.
Since all the sensors come awake at each time step, the set of at most two locations where an object could
be present is known exactly. Suppose for the moment that there are two distinct locations where an object
is observed. Let b̃k = (b̃k,1, b̃k,2) with b̃k,1 < b̃k,2 being the locations where objects are present at time
k. Thus, b̃k belongs to a subset of {1, . . . , n + 1}2. To completely characterize pk we need only specify
the probability that bk = b̃k. Denote this probability as dk. Then with probability 1 − dk we have that
bk = (b̃k,2, b̃k,1). Note that if there is only one distinct location where an object is observed we can simply
let b̃k,1 = b̃k,2 and dk = 1.

The state space for x̃k = (b̃k, dk) is not finite due to dk ∈ [0, 1]. The approach we take is to quantize dk
and construct a kernel P̃ for this quantized version of x̃k. Note that in doing this we no longer have a true
lower bound; however, with fine enough quantization we can well approximate such a lower bound.

We define functions TW and TS such that TW (x̃k, `) and TS(x̃k, `) are the tracking costs incurred by
sensor ` when it is awake and asleep, respectively. We showed that the per-sensor Bellman equation for
sensor ` under the above assumptions is given by

J (`)(p̃) = min
u

∑
x̃ 6=T̃

(
u∑
j=1

(p̃P̃ j)(x̃)TS(x̃, `) + (p̃P̃ u+1)(x̃)TW (x̃, `) + c(p̃P̃ u+1)(x̃) + (p̃P̃ u+1)(x̃)J (`)(δx̃)

)
(4.52)

This equation can be solved through the use of policy iteration to yield a policy and a lower bound.

1.3.1. Numerical Results

In this section, we give some simulation results that illustrate the performance of the policies we derived in
previous sections.

We first consider a network we term Network A. This network is a one-dimensional network with seven
sensors. The small number of sensors was needed because the AA policy must perform policy iteration

93



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

for a number of states equal to n(n+1)
2 λ + n + 1 where λ is the number quantization levels for dk. In our

simulations, we used λ = 21 for a total of 596 states. Policy iteration for this number of states required
significant computation and the network could not be made much larger. A value of umax = 50 was used in
computing the AA policy. The object movement in Network A is parametrized by a scalar a ∈ [0, 1]. Object
1 moves one cell to the left with probability a and one cell to the right with probability 1 − a in each time
step. Object 2 does just the opposite, moving one cell to the left with probability 1 − a and one cell to the
right with probability a. Note that the closer a is to 0.5, the more difficult it is to distinguish between the
objects based on their movements. This means that by varying a we can investigate the performance of our
policies for various amounts of data association error.

We illustrate the performance of our policies for Network A for the cases a = 0.55, a = 0.75, and
a = 0.95 in Figure 4.9. Curves are shown for the QMDP and AA lower bounds as well as the QMDP , FCR,
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(b) a = 0.75
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(c) a = 0.95

Figure 4.9: Performance of QMDP , FCR, and AA policies for Network A for various values of a.

and AA policies. The curves are tradeoff curves that examine the tradeoff between energy cost and tracking
cost as the parameter c is varied. In examining the tradeoff curves, the distance from the right-hand point
of each curve to the x-axis is the average number of data association errors when all sensors are awake. No
tracking error smaller than this can be achieved. From the figures we can draw the following conclusions:

• The lower bound due to the QMDP assumption is tight when only a few sensors are awake (large c).
This is because the QMDP assumption incorporates only observation errors and when few sensors are
making observations, observation errors dominate.

• The lower bound due to the AA assumption is tight only when many sensors are awake (small c). This
is because the tracking cost approximation used in computing the AA policy is loose when neither
object is observed.

• The QMDP policy performs best when only a few sensors are awake, and the AA policy performs best
when many sensors are awake. Not surprisingly, these are the same regions where their bounds are
tight.

• The FCR policy is the worst-performing policy. The difference between the FCR policy and the other
policies, while never especially large in terms of the tradeoff curves, shrinks as data association errors
become small.

We now turn our attention to simulating the FCR policy, which scales better than the other policies, for
a larger network, termed Network B. Network B is a one-dimensional network with 41 sensors. Note that
policy iteration for the QMDP policy would need to be performed over (n + 1)2 = 1764 states and the
requirements for the AA policy would be even larger. The distributions for the movement of the objects
are given in Table 4.3 and illustrated graphically in Figure 4.10(a). Since no lower bounds are available
for Network B, we compare the performance of our FCR policy to a duty cycle policy, where each sensor
comes awake with some fixed probability at each time step. Figure 4.10(b) shows tradeoff curves for these
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Table 4.3: Object movement distributions for Network B.
Change in Position -2 -1 0 +1 +2
Probability for Object 1 0.2482 0.0568 0.3205 0.2633 0.1112
Probability for Object 2 0.1641 0.3395 0.1566 0.0633 0.2765
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Figure 4.10: Tradeoff curves and object movement distribution for Network B.

two policies. The tradeoff curve for the duty cycle policy is generated by varying the probability that a
sensor is awake between 0 and 1. The FCR tradeoff curve significantly outperforms the duty cycle policy.

2. Sensor Scheduling

Here, we consider a scheduling variant of the problem which can be thought of as a sleeping problem with
an external wake-up mechanism, i.e., sensors can be woken up by external means (e.g. a low-power wake-
up radio). At time k, the permissible control actions for an n-sensor scheduling problem are n-dimensional
binary vectors, i.e., vectors in {0, 1}n (corresponding to the set of sensor nodes to activate at each time
step), in contrast to vectors in Nna(k)

0 for the sleeping problem (corresponding to the sleep durations of
awake sensors), where N0 is the set of non-negative integers and na(k) the number of awake sensors at time
k. The simpler structure of the control space for the scheduling problem does not address the combinatorial
nature of the control space, yet it enables efficient approximate solution methodologies [8].

Again, we adopt a bottom-up approach where we consider a range of sensing, motion and cost models
with increasing levels of difficulty and devise suboptimal scheduling policies to balance the tradeoff between
energy expenditure and tracking performance. In some cases we are also able to derive lower bounds on the
optimal energy-tracking tradeoff. In addition to the simple sensing model of Section 1.1, we also consider
more generalized models.

2.1. Overlapping Sensors with Discrete Observations Models

In this model, we continue to use a discrete model for the target transition but we redefine a new sensing
model and cost structure to account for the fact that sensors could have overlapping visibility regions. Within
that model we further consider simple and probabilistic sensing. Simple sensing refers to the case where the
target is perfectly observed within the visibility region of any active sensor. Therefore, a tracking error is
incurred if none of the sensors observing the current target location is active. Redefining the cost structure
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for this model:

g(bk,uk−1) = 11bk 6= τ

(
11uk−1,j = 0,∀j ∈ Bbk +

n∑
`=1

c11uk−1,` = 1

)
(4.53)

By probabilistic sensing we account for observation uncertainty even if the target is within the visibility
region of one or more active sensors. In particular, we assume that the observation is uniformly distributed
over a location set Rk (other than the true target location) that belong to the visibility regions of the set
of awake sensors monitoring the true location bk. The number of these locations is function of the control
uk−1 and the object state bk. If the true target location does not belong to the visibility region of an awake
sensor, we naturally exclude the visibility region of that sensor since no measurement is received from such
a sensor. WhenRk is a singleton {bk}, we set q = 1. A tracking error is incurred if the target is not directly
observed and the uncertainty in the target location cannot be resolved.

2.2. Continuous Observation, Continuous State and Arbitrary Cost Models

In this class of models, we allow for an arbitrary distribution of the observations given the current object lo-
cation. Tracking cost is modeled through an arbitrary distance measure between the actual and the estimated
object location. If we denote the set of possible object locations B, we have B = m + 1. In contrast to the
simplistic model, m is different from n since object locations are arbitrary and we no longer assume one
location corresponds to the sensing range of one particular sensor. The (m + 1)-th state again corresponds
to a termination state. Furthermore, the target can be moving on a continuous state space in which case m
is∞.

For simplicity of exposition, we focus on discrete state spaces. Also, we omit indexing time whenever
the time evolution is well-understood to avoid cumbersome notation. We consider the following observation
model for illustration; however, our approach is fairly general:

p(s|b,u) =

n∏
i=1

{
1√
2π

exp

(
−1

2

(
si −

V

(b− pi)2 + 1

)2
)

11ui = 1 + δ(si − ε)11ui = 0

}
(4.54)

where s is an n × 1 continuous observation vector with the i-th entry, si, representing the observation of
sensor i, pi, i = 1, . . . , n, is the position of the i-th sensor, b is the target state, V is some positive constant,
ε stands for erasure, and δ(.) is the Dirac Delta function. In (4.54), the observation of an active sensor is
Gaussian with a mean received signal strength inversely proportional to the square of the distance between
the sensor and the actual target location. The observation of an inactive sensor is just an erasure.

As for the sleeping problem we define the tracking error through an arbitrary bounded distance function
d(b, b̂) between the actual and the estimated object locations, which can be the Hamming distance or the
Euclidean distance for discrete and continuous state spaces, respectively.

2.2.1. Approximate Scheduling Policies

There are a number of algorithms for solving POMDPs exactly [31, 73, 156]. These algorithms rely on the
powerful result of Sondik that the optimal value function for any POMDP can be approximated arbitrarily
closely using a set of hyper-planes (α-vectors) defined over the belief simplex [156]. The result is a value
function parameterized by a number of hyperplanes (or vectors) whereby the belief space is partitioned into
a finite number of regions. Each vector minimizes the value function over a certain region of the belief space
and has a control action associated with it, which is the optimal control for the beliefs in its region.

To clarify, in value iteration we generally start with some initial estimate for J∗ and repeatedly apply the
transformation defined by the right hand side of the Bellman equation until the sequence of cost functions
converges. Let {α(k)

i }
|J(k)|
i=1 denote the set of vectors parameterizing the value function J (k) after k iterations,

where |J (k)| is the total number of hyperplanes, and α(k)
i (b), which is a hyperplane in the belief space,

represents the value of executing the k-step policy associated with the i-th vector starting from a state b.
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Hence, the value of executing the i-th hyperplane policy starting from a belief state p is simply the dot
product of αi and p:

J
(k)
i (p) =

∑
b

p(b)α
(k)
i (b) = p ·α(k)

i .

Therefore, the value of the optimal k-step policy starting at p is simply the minimum dot product over
all hyperplanes, i.e.,

J∗(k)(p) = min
{α(k)

i }
p ·α(k)

i .

Hence, J∗(k)(p) is piecewise linear and concave. Some of the vectors (also known as policy trees) may
be dominated by others in the sense that they are not optimal at any region in the belief simplex. Thus, many
exact algorithms devise pruning mechanisms whereby a parsimonious representation with a minimal set of
non-dominated hyperplanes is maintained.

Even though the aforementioned linearity/concavity property makes the policy search a great deal sim-
pler, the exact computation is generally intractable except for relatively small problems. The two major
difficulties for exact computation arise from the exponential growth of the vectors with the planning horizon
and with the number of observations, and the inefficiencies related to identification of such vectors and sub-
sequently pruning them. Namely, the number of hyperplanes grows double exponentially such that after k
steps the number of hyperplanes is O

(
|U||S|k

)
, where |U| and |S| denote the cardinality of the control and

observation spaces, respectively. Equivalently, the number of hyperplanes per iteration grows as:

|J (k+1)| = O
(
|U||J (k)||S|

)
.

This has led to a number of approximations and suboptimal solutions techniques that trade off solution
quality for speed.

Remark 2.1. The intractability of the optimal solution for our problem is primarily due to the following
reasons:

(i) The cost function is minimized over the simplex of probability distributions, i.e., the (m−1)-dimensional
belief simplex for m-state discrete state-space models, and the space of probability density functions
for continuous state-space models.

(ii) The exponential explosion of the action space with the number of sensors (2n actions).

(iii) The exponential growth of the α-vectors with the planning horizon and with the number of observa-
tions, especially for continuous observation models.

In addition to the QMDP strategy, we also develop sensor scheduling strategies based on point-based
approximations. Despite the fact that the generated QMDP based policies perform reasonably well, generally
the resulting policies would not take actions to gain information (an effect of the observable-after-control
assumption), leading to situations wherein the belief state does not get updated appropriately. Furthermore,
while decoupling the scheduling problem provides close-to optimal performance for uncoupled or lightly-
coupled sensing and tracking models (see Section 3), it might come at the expense of reduction in solution
quality for more realistic or heavily-coupled models. While our previous approach reduced complexity
via decoupling and learning, the key idea here is to optimize the value function only for a small set of
reachable beliefs P and not over the entire belief simplex. Developing a class of point-based algorithms,
which mostly differ in the way the subset of belief points is chosen and the execution order of the backup
operations over the selected belief points, has been the focus of recent algorithm-development research
targeting large scale POMDPs. These algorithms were designed to deal with large state spaces, yet, two extra
difficulties in the scheduling problem arise from the size of the action space (which is 2n for all models)
and the observation space (for the models in Sections 2.2). Regarding the dimensionality of the action
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Figure 4.11: Structure of the point-based scheduling approximation.

space, we devise a strategy to sample actions based on the support of the beliefs and the sparse structure
of the transition models. Intuitively speaking, an object can only move from one side of the network to
the other side within time constraints rendering exponentially many scheduling actions irrational at certain
times. Hence, instead of performing full updates including 2n actions, we perform the minimization over
a reduced control space U(p) for every p ∈ P . When dealing with continuous or large observations, we
combine that with a methodology that aggregates observations and uses aggregate observations for value
iteration updates. At the core of the algorithm we use Perseus [157], a variant of PBVI [122], whereby
value iteration updates are not carried out for every sampled belief. Instead, the values for many belief
points are improved simultaneously in one update. Figure 4.11 depicts the structure of our point-based
approximation, combining control space reduction and observation aggregation with point-based updates.
Earlier, we described QMDP based policies, whereby issues (i) and (iii) in Remark 2.1 are resolved since
we only needed to solve the underlying Markov Decision Process to describe the full approximate surrogate
value function. Decoupling the problem into one-per-sensor subproblems (naturally or artificially) further
enabled us to address issue (ii). Yet, the resulting scheduling policies generally do not take control actions
to gain information.

Instead of reducing complexity via artificial decoupling and learning, the key idea of point-based ap-
proximate policies is to optimize the value function only for specific reachable sampled beliefs and not over
the entire belief simplex (addressing issue (i) in Remark 2.1). Due to the large size of the control space,
we also devise strategies to sample actions exploiting the sparsity of the beliefs and the problem structure
(to address issue (ii)). Moreover, observation aggregation is used for continuous observation models. Fur-
thermore, since Perseus updates are not carried out for every sampled belief and multiple belief points are
improved simultaneously, the number of α vectors grows modestly with the number of iterations addressing
issue (iii) in Remark 2.1.

Figure 4.12 illustrates the progress of one iteration of Perseus. The x-axis represents the belief space
with circles representing the sampled belief set P = {p1, . . . , p7}. The y-axis is the value function at
consecutive iterations, i.e. J (k) (solid lines) and J (k+1) (dashed lines). The figure displays the α vectors
and different steps illustrating the progress of the algorithm. The algorithm selects a belief point at random
and updates the value function for that belief. Then a new update is carried out for a belief point randomly
selected from the set of remaining beliefs, i.e., beliefs which did not improve in the previous step. The
algorithm repeats till all belief points are updated. Solid lines represent the hyperplanes in the k-th iteration
and dashed lines represent the newly added hyperplanes during the (k + 1)-th iteration.

2.2.2. Sampling Actions Based on the Support of the Belief

Note that the DP update equation involves a minimization over all control actions in |U|. Even though one
iteration of the algorithm is linear in the cardinality |U| of the control space, |U| itself is exponential in the
number of sensors, thus rendering the minimization infeasible for a relatively large sensor network.

The idea here is to exploit the structure of the scheduling/tracking problem. Since the target transition
model is naturally sparse, we predict relatively small uncertainty regions for the target state at future time
steps. More specifically, for every belief point in P , we use prior information about the target transition
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(a) (b)

(c) (d) (e)

Figure 4.12: One iteration of Perseus illustrating the progress of the algorithm. The x-axis represents the
belief space with circles representing the sampled belief set P = {p1, . . . , p7}. The y-axis is the value
function at consecutive iterations, i.e. J (k) and J (k+1). Solid lines represent the hyperplanes in the k-th
iteration and dashed lines represent the newly added hyperplanes during the (k + 1)-th iteration. (a) The
initial value function J (k); (b) p1 is randomly selected and a new α vector is added to J (k+1). This update
step only happens to improve p1. Dark circles represent belief points which did not yet improve; (c) p3 is
sampled and a new hyperplane is added which improves the value for p2 through p6; (d) Only p7 did not
improve, thus p7 is sampled and a new hyperplane is added to J (k+1); (e) All belief points improved, J (k+1)

is computed, the iteration ends.

model to project the future state of the target. This is particularly useful when the current belief vector is
sparse leading to more restricted uncertainty regions. Subsequently, we restrict our attention to a significant
subset of sensors, that is, the sensors of relevance to the particulars of the uncertainty region. Hence, we only
consider scheduling actions involving scheduling different combinations of a reduced number of sensors
which considerably reduces the control space for every belief in P . If the number of significant sensors is
still large, we randomly sample actions from the reduced control space. Note that the same intuition extends
to more complex motion models wherein information about target speed, maneuver, and acceleration can
be factored in to define the future uncertainty regions. Hence, instead of performing full updates including
2n actions, we perform the minimization over a reduced control space for every p ∈ P . Specifically, we
redefine the point update equation as: α = arg min{αp

u}u∈U(p)
p · αpu, where U(p) designates the reduced

control space for the belief vector p. It is worth mentioning that the observation and the cost models need
to be computed on the fly for each sampled control action during the algorithm implementation.

2.2.3. Observation Aggregation

The point update equation involves back-projecting all hyperplanes in the current iteration one step from the
future and returning the vector that minimizes the value of the belief. Since this involves computing a cross
sum by enumerating all possible combinations of alpha vectors for the different observations, a number of
vectors which is exponential in the number of the observations is generated at each stage. The recursion has
to be redefined to address continuous observation models. It is not hard to see that if different observations
map to the same minimizing hyperplane, then they can be aggregated. Hence, if we can partition the obser-
vation space into regions that map to the same hyperplane (possibly non contiguous), the continuous model
is reduced to a corresponding discrete model. Integration is replaced by a summation over these partitions
and the weighing probabilities are obtained by integrating the conditional density over these partitions. This
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is clarified in the following:∫
s

min
αi

∑
b′

p(s|u, b′)
∑
b

p(b′|b)p(b)αi(b
′) ds =

∑
j

∑
b′

[pP ]b′P[Sj |u, b′]αj(b′). (4.55)

To find the regions Sj of aggregate observations, we need to solve for the boundaries, i.e., for each pair
(i, j) of α vectors we need to solve for s:

αi · φ(p,u, s) = αj · φ(p,u, s) (4.56)

where φ(p,u, s) = p1(b′) ∝∑b p(b)p(s|b′,u)p(b′|b)
Hence, we need to solve:

∑
b′

(αi(b
′)−αj(b′))[pP ]b′ exp

{
−1

2

∑
i:ui=1

(si −
V

(b′ − pi)2 + 1
)2

}
= 0 (4.57)

After solving for the boundaries, we can readily define the regions:

Sj∗ = {s|j∗ = arg max
j
αj · φ(p,u, s)} (4.58)

Now the update step is simply:

J(p) = g(p,u∗) +
∑
j

∑
b′

[pP ]b′P[Sj |u∗, b′]αj(b′) (4.59)

where
P[Sj |u∗, b′] =

∫
s∈Sj

p(s|u∗, b′)ds.

Finding a closed form analytical solution for (4.57) is not feasible. Instead, we use Monte-Carlo simulations
to solve for the boundaries and get estimates of the weighing probabilities by sampling observations from
p(s|u, b′) for different combinations of actions and target states.

Akin to the sleeping problem, we are able to derive lower bounds on the energy-tracking tradeoff for the
simple as well as the continuous Gaussian observation models. For the simple model, the QMDP value func-
tion is itself a lower bound on the expected total cost since more information is available to the controller at
future time steps given the reduced uncertainty assumption. To obtain a lower bound on the optimal energy-
tracking tradeoff for such models, we combine the observable-after-control assumption with a decomposable
lower bound on the tracking cost as we presented for the sleeping problem.

2.2.4. Results

In this section, we show experimental results illustrating the performance of the proposed scheduling policies
for the different models considered in this paper.For the planning phase in case of point-based policies,
beliefs are sampled by simulating multiple object trajectories through the sensor network. Each trajectory
starts from a random state sampled from the initial belief, picking actions at random, until the target leaves
the network.

First, we consider the simple model with a linear network of 41 sensors. The object can move anywhere
from three steps to the left to three steps to the right in each time step. The distribution for these movements
is given in Table 4.4. Figure 4.13(a) shows the tradeoff curve between the number of active sensors per
unit time and the tracking error per unit time using the point-based and the QMDP policies. The figure also
shows a lower bound on the optimal performance. It is clear that both policies lead to tradeoffs that closely
approach the lower bound. The QMDP policy gets even closer to the lower bound at small tracking errors
since the observable-after-control assumption is more meaningful in this regime. In Figure 4.13(b) we show
convergence results for the point-based algorithm with reduced control space minimization. The top left
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Table 4.4: Object movement for a network of 41 sensors with simple cost and sensing models.
Change in Position -3 -2 -1 0 1 2 3
Probability 0.23 0.10 0.01 0.33 0.06 0.05 0.22
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(b) Convergence results for the point-based algorithm for a one-
dimensional network of 41 sensors with the simplistic sensing
and cost model.

Figure 4.13: Tradeoffs and convergence for a 1-D networks of 41 sensors with the simple sensing and cost
model.

subplot displays the convergence of the sum cost of all the belief points inP; the top right shows the expected
cost averaged over many trajectories; the bottom left subplot shows the number of hyperplanes constituting
the value function as a function of time; the bottom right subplot shows the number of policy changes versus
time, i.e., the number of belief points for which the optimal action changed over 2 consecutive iterations
of the algorithm. Figure 4.15 displays the average cost and the tradeoff curves for the network in Figure
4.14 with a probabilistic observation model. The cost per unit time is the average ratio of the total energy
plus tracking cost and the time the object spends in the network before reaching the termination state.
The network is composed of 12 sensors and 20 object locations with the shown connectivity such that the
observation range for the different sensors overlap. The object moves according to a random walk anywhere
from three steps to the left to three steps to the right in each time step. The distribution of these movements
is given in Table 4.1. For the locations close to the boundaries, i.e., when less than three steps are available
on the right or left, the remaining probability is absorbed in the transition to the termination state. Since
the tracking error for this model is inherently coupled across sensors, the global point-based policy clearly
outperforms the learning-based QMDP policy.

Figure 4.14: A sensor network with overlapping sensing ranges (12 sensors and 20 object locations). An
edge connects a sensor to a given location if this location falls within the sensing range of that sensor.
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Figure 4.16: Continuous observation model: (a) Total cost versus energy cost per sensor, (b) Energy-tracking
tradeoff

Next, we consider a network of 10 sensors where object locations are located on integers from 1 to 21.
The observation for each awake sensor is continuous and Gaussian as in (4.54) with V = 10. The locations
of the sensors are as given earlier in Table 4.2 and the object moves according to the random walk defined
in Table 4.1. For every object state and every scheduling action in the reduced control space, we sample
50 observations to construct estimates of the weight probabilities and compute the aggregate observation
boundaries. Up to 32 actions are sampled from the reduced control space. In this setup, the belief set consists
of 500 sampled belief vectors and we assume a Hamming error cost. Figure 4.16 shows the performance
of the different policies for the continuous observation model. It is shown that the point-based scheduling
policy outperforms the QMDP policy. We further show a lower bound on the optimal performance tradeoff.
The lower bound is loose especially in the high tracking error regime since the derived bound on per-sensor
tracking errors assumes all other sensors are awake. However, we can exactly compute the saturation point
for the optimal scheduling policy since every policy has to eventually meet the all-asleep performance curve,
shown in Figure 4.16a, when the energy cost per sensor is high. At that point, all sensors are inactive and
hence the target estimate can only be based on prior information. Our results are not restricted to 1-D
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Figure 4.17: (Left) 2-D network with 20 sensors (stars) and 25 possible object locations (squares). (Right)
Energy-Tracking tradeoff of the QMDP and point-based scheduling policies for a 2-D network with contin-
uous observations and Hamming cost.

networks but easily apply to 2-D networks. Namely, Figure 4.17 (right) shows the energy-tracking tradeoff
of the QMDP and point-based policies in addition to a lower bound on optimal performance for the 2-D
network of Figure 4.17 (left) with continuous observations and Hamming cost. The entries of the object
transition matrix are generated randomly with the restriction that at any state the object can only move to its
neighboring locations or remain at its current state. This simulation shows similar trends to the previously
observed results. The point-based policies outperform the QMDP approach at the expense of an increase
in the offline computational complexity of the planning phase. Furthermore, the lower bound is reasonably
tight in the low tracking error regime.

2.3. Scheduling in Clutter

Here, our goal is to design a central controller to schedule the sensors to track an object of interest in the pres-
ence of false alarms (clutter) [7]. Non-linear filtering for tracking in cluttered environments is particularly
hard as it requires considering a large number of events due to the so-called data association problem, and
is hence computationally intensive. The presence of random interference from nearby objects, false alarms,
electromagnetic interference etc. generally leads to ambiguity in the origin of the sensor measurements and
hence it is crucial to associate the measurements with their corresponding tracks. One simple and intuitive
candidate solution for the association problem is to choose the signal with the highest intensity, among a set
of validated measurements, for track update and discard the others. This is known as Strongest Neighbor
Filter SNF. The Nearest Neighbor Filter NNF is another solution that uses the measurement closest to the
predicted measurement obtained through a prediction step of the track estimation filter. However, these
algorithms start to fail when the false alarm rate, or clutter density, increases. Alternatively, probabilistic
data association (PDA) for a single target in clutter is another approach which uses all the validated mea-
surements and does not discard any of them [13]. A proper weight, reflecting the association probability, is
assigned to each measurement and the weighted average of the validated innovations is used for the update.

While most of the existing literature on target tracking in clutter has focused on the estimation aspect of
the tracking problem using one or two sensors, the primary focus of our work is on the design of efficient
control policies organizing the activity of a larger network of sensors in the presence of false alarms. We cast
the scheduling problem as a Partially Observable Markov Decision Process (POMDP), and devise strategies
whereby the sensors are activated to optimize the fundamental tradeoff between energy expenditure and
tracking performance in the presence of spurious measurements from clutter.

We focus on the design of scheduling policies rather than the tracking aspect of the problem. Following
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the same bottom-up approach, we first considered a simplistic model for sensing with non-overlapping
sensing ranges. This assumption is then relaxed when we consider sensors with overlapping sensing regions.
Thus, if sk is the measurement vector at time k and sk,` the observation of the `-th sensor, then

sk,bk =

{
1, if uk−1,bk = 1;
0, if uk−1,bk = 0;

(4.60)

and

sk,` =


1, w.p. PF if uk−1,` = 1;
0, if uk−1,` = 0; ∀` 6= bk
0, w.p. 1− PF if uk−1,` = 1;

(4.61)

The clutter density is captured by the false alarm probability PF that an active sensor provides a positive
measurement. Therefore, clutter leads to uncertainty into the origin of the measurements which could even-
tually lead to loss in tracking performance. Proper countermeasures should take that into consideration when
designing a sensor scheduling policy.

2.3.1. Overlapping Sensing Regions

In this model, we allow the sensing regions to overlap. An example of this model is illustrated in Figure 4.18
depicting a network of n = 12 sensors observing m = 20 potential object locations according to the shown
connectivity. If Bbk is the set of sensors observing the target at time k, then the observation model of the
`-th sensor is given by

p(sk,` = 1|bk, uk−1,` = 1) =

{
1, if ` ∈ Bbk ;
PF , if ` /∈ Bbk

(4.62)

That is, when the target is in the vicinity of an active sensor, the sensor gets a positive observation, how-
ever, active sensors which do not belong to the set Bbk could also falsely declare a target is present with
probability PF . This discrete model is simplistic, yet it captures essential features in real sensing systems,
namely, overlapping sensing ranges, limited visibility for each sensor, as well as geographical neighborhood
properties. In the presence of clutter, the estimation problem becomes more involved. We have to adapt
our filter to account for the uncertainty in the origin of sensor measurements. We let A(k) denote the set of
active sensors declaring a target at time k, and Ai(k), i = 1, . . . , |A(k)|, its i-th element. Now define the
events

θi(k) , {sk,Ai(k) is target originated}, i = 1, . . . , |A(k)|
θ|A(k)|+1(k) , {target reaches termination state τ} (4.63)

and

θ0(k) ,
⋂
i

θci (k) (4.64)

with probabilities

βi(k) = P(θi(k)|Ik), i = 0, . . . , |A(k)|+ 1 (4.65)

where θci (k) denotes the complement of the event θi(k). Wherefore, θ0(k) refers to the event where none of
the measurements at time k is target-originated.

the new belief at time k can be written as Hence,

pk = β0(k)
[
pk−1P

]
{j:uk−1,j=0} +

|A(k)|∑
i=1

βi(k)eAi(k) + β|A(k)|+1(k)eτ (4.66)
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Figure 4.18: Network with overlapping sensor regions. 12 sensors (shown as circles) cover 20 locations
(squares). An edge connects a circle and a square when the location falls within the sensing region of that
sensor.

Next we compute the association probabilities βi(k) = P (θi|Ik). Using Bayes’ rule

βi(k) = P
|A(k)|−1
F

∏
j∈A(k)

δ(sk,j − 1)
∏

`/∈A(k)

δ(sk,`)×
∑
bk−1

P(bk = Ai(k)|bk−1)pk−1, i = 1, . . . , |A(k)|

(4.67)

and

β0(k) = P
|A(k)|
F

∏
j∈A(k)

δ(sk,j − 1)
∏

`/∈A(k)

δ(sk,`)× [pk−1P ]{j:uk−1,j=0} (4.68)

An analogous approach can be used to write the filtering equations for the overlap model but the evolution is
generally more difficult to write mathematically in a compact form. Procedurally, it follows the exact same
approach described above. All the hypotheses are first enumerated. Then, the evolution is obtained as a
weighted combination of the evolution under each individual hypothesis where the weights correspond to the
association probabilities. However, the number of hypotheses in this case is significantly larger since under
one hypothesis it might very well be the case that multiple measurements from awake sensors are target
originated because the sensing regions of different sensors overlap. The number of hypotheses generally
scales exponentially with the number of active sensors. To reduce the space of association hypotheses, the
controller could limit the maximum number of sensors to be activated at every time step to a relatively small
number, say n1 sensors. As we will show in our simulations results, we choose n1 = 5, i.e., at most 5 sensors
could be active at a given time instant. we present our proposed point-based scheduler which approximates
the optimal solution using a point-based approximation driven by the non-linear filters described previously.

3. Simulation Results

In this section, we show experimental results illustrating the performance of the proposed scheduling policies
for the different models.

First, to illustrate some of the basic ideas, consider a simple linear network with 11 sensors where the
object moves according to a symmetric random walk either one step to the left or one step to the right. We
term this network Net A. Figure 4.19(a) shows the tradeoff curves between the number of active sensors per
unit time and the tracking error per unit time using our point-based scheduler for different levels of clutter
density for Net A. As expected, for the no clutter case in the low tracking error regime, i.e., at vanishing
energy cost per sensor, activating one sensor to the left or to the right of the sensor is enough to perfectly
track the target. The reason being that, at each time step the target would be either perfectly observed (by an
awake sensor) or its position can be exactly inferred. Hence, the point-based scheduler in this case converges
to the optimal scheduling policy. As the clutter density increases, it is clear that the tracking error increases
for the same number of active sensors. The figure illustrates the performance of our point-based scheduler
for different clutter densities, namely, when 10% and 20% of the time an active sensor measures clutter.
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Figure 4.19: (a) Energy tracking tradeoff for different clutter densities for Net A; (b) Number of active
sensors versus clutter density for different energy costs per sensor for Net A.

Figure 4.19(b) shows the number of active sensors versus the clutter density for fixed energy costs per
sensor c = 0.1 and c = 0.2. Indeed, for the no clutter case, only one sensor is activated. This is optimal as
long as c < 0.5 since the energy cost is smaller than the expected tracking cost of 0.5. As we increase the
clutter density, the scheduler chooses to activate more sensors to compensate for the uncertainty associated
with the origin of the measurements until a certain point where the clutter density is just too high that the
tracking performance approaches that of uninformed tracking based solely on the available knowledge about
the propagation model and the clutter model. In this case, activating sensors is of no avail and the scheduler
judiciously chooses to disengage all the sensors to save the energy resources and avoid unnecessary resource
expenditure. Not surprisingly, the x-axis intercept i.e., the cutoff clutter density at which all sensors are
deactivated, is larger for smaller values of c since turning on more sensors is less costly.

Second, consider the scenario where the object is moving according to a random walk anywhere from
three steps to the left to three steps to the right in each time step as in Table 4.1. Figure 4.20 illustrates the
energy-tracking tradeoff of the proposed policies for different levels of clutter density. It is clear that the
degradation in performance w.r.t. to the no clutter case is graceful at low and moderate clutter densities.

Next we consider a network where the sensing regions of different sensors overlap. The network consists
of 20 possible object locations monitored by 12 sensors as shown in Figure 4.18. The total cost per unit time
versus the energy cost c is shown in Figure 4.21 (a) for different levels of clutter density. All the curves
saturate when the energy cost is too high and the scheduler disengages all the sensors. In this case, the
total cost is due to tracking cost based solely on the prior information. Not surprisingly, the saturation point
occurs at smaller c for higher values of the clutter density. For moderate values of the clutter density (e.g.
5%), the gap between the saturation points of the cluttered case and the no clutter case is small showing
that through judicious use of scheduling actions we are able to compensate for the uncertainty due to clutter.
Figure 4.21 (b) shows the tradeoff curves for this overlap network.
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Figure 4.20: Energy tracking tradeoff for different clutter densities for Net B.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cost per Unit Time

En
er

gy
 co

st 
pe

r s
en

so
r (

c)

 

 

No clutter
PF = 0.05

PF = 0.1

PF = 0.2

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sensors Awake per Unit Time

Tr
ac

kin
g E

rro
r p

er
 U

nit
 T

im
e

 

 
No clutter
PF = 0.05
PF = 0.1
PF = 0.2

(a) (b)

Figure 4.21: (a) Total cost per unit time versus energy cost per sensor for the overlap network; (b) Energy
tracking tradeoff for different clutter densities for network with overlapping sensing ranges
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Chapter 5

Agile Sensors and Boundary Tracking

The work presented in this chapter has been done by the group of Dr. Bertozzi (UCLA) in collaboration
with Dr. Tartakovsky (USC).

1. Agile Sensors

1.1. Second Generation Testbed

During summer 2006 we constructed the second generation of an economical cooperative control testbed.
The original car-based vehicle was improved with on-board range sensing, limited on board computing, and
wireless communication, while maintaining economic feasibility and scale. A second, tank based platform,
uses a flexible caterpillar-belt drive and the same modular sensing and communication components. We
demonstrated practical use of the testbed for algorithm validation by implementing a recently proposed
cooperative steering law involving obstacle avoidance. This work was published in the proceedings of the
2007 American Control Conference.

1.2. Boundary Tracking

CoPI Bertozzi and postdoc Zhipu Jin developed a framework for environmental boundary tracking and
estimation by considering the boundary as a hidden Markov model (HMM) with separated observations col-
lected from multiple sensing vehicles. For each vehicle, a tracking algorithm is developed based on Pages
cumulative sum algorithm (CUSUM), a method for change point detection, so that individual vehicles can
autonomously track the boundary in a density field with measurement noise. Based on the data collected
from sensing vehicles and prior knowledge of the dynamic model of boundary evolvement, we estimate the
boundary by solving an optimization problem, in which prediction and current observation are considered in
the cost function. Examples and simulation results were presented to verify the efficiency of this approach.
This work was published in the 2007 IEEE Conference on Decision and Control. The algorithm was imple-
mented on the second generation testbed using a convoy of vehicles. Relative positioning between vehicles
allows several to maintain a convoy while tracking the boundary. The algorithm performs well in the pres-
ence of moderate sensor noise. Some adaptation of the algorithm was necessary to run it on a testbed with
limited onboard computing. In particular a modified Kalman filter was implemented in which a constant
gain was estimated a priori and used on the vehicle. The implementation work was published in the 2009
IEEE American Control Conference.

1.3. Paper Published in ICINCO 2010

Bobby Liu, Martin Short, Yasser Taima, and Andrea Bertozzi develop a searching algorithm for a group of
agents moving in a swarm and sensing potential targets. The objective of the algorithm is to use these groups
to efficiently search for and locate targets with a finite sensing radius in some bounded area. We present an
algorithm that both controls agent movement and analyzes sensor signals to determine where targets are lo-
cated. We use computer simulations to determine the effectiveness of this collaborative searching. A scaling
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analysis compares swarm size to proficiency of searching. This work has been published in Proceedings of
the 7th International Conference on Informatics in Control, Automation, and Robotics (ICINCO), Portugal,
June 2010. This work is being transitioned to China Lake Naval Air Warfare Center (see Tech Transfer
section).

1.4. Paper Published in ICINCO 2011

One time step up funds provided on this contract led to the design and building of new hardware for our
microcar testbed at UCLA. The cars were designed and built by Artero’s Lab, a small startup company
formed by former masters students working in Bertozzi’s lab. The initial setup was tested and software
controllers were written by EE Masters student David Hermina as part of his final project for the degree. In
summer 2010 a team of undergraduates developed algorithms to test the capabilities of the platform. Their
work led to a publication in ICINCO 2011 [61].

The micro-cars feature two on board processors; each devoted to different tasks. The upper board is a
350MHz-rated Virtex-4 FPGA. It is dedicated to on-board algorithm processing as well as a user interface.
The main motivation for a powerful on-board processor is to increase the autonomy of each vehicle. In
previous iterations of the AML Testbed, vehicles relied on a third-party desktop computer to perform all
calculations. With this new processor, the cars can perform all required processing on-board. The lower
board is a 50MHz-rated ARM Cortex-3 microcontroller. It is dedicated to mo- tion control and sensor
management. The lower board directly controls the vehicles motion by generating power modulation signals
that feed into the car’s motor and steering servo. It also gathers data from the various sensors using a
prioritized task controller. The micro-cars have control system made up of two parts. The cars have a rear
wheel drive system with a maximum speed of 20 cm/s. The cars are steered by a axel-articulated servo
connected to the front wheels. The experimentally verified maximum turning angle is ±18 degrees. This
proved to be one of the largest limitations of the testbed as the micro-cars can trace a circle with a minimum
diameter of 50cm. Because the increased computing capabilities could allow for more complex programs to
be run on board, the memory was also upgraded from the previous generation. The upper board has access
to a both a 64MB DDR SDRAM module as well as a 4 MB ash drive. The lower board’s microcontroller
houses internal 8KB SRAM and a 64KB ash drive. The lower board also contains a 1KB EEPROM module
to store system control parameters that are specific to each car, such as the car’s identification number, servo
gains, and the servo offset.

The sensor systems of the micro-cars is vastly increased from the previous generations. Each car sports
a 640x480 digital camera, two high performance uni-directional gyroscopes, an optical encoder used for
velocity estimation, and an infrared sensor module. The digital camera is not currently functional but could
later be integrated to add advanced image processing capabilities to algorithms. The camera could be applied
to detect obstacles when coupled with the IR sensors or to locate destinations points on the testbed. The
140Hz analog gyroscopes provide physical orientation sensing information. They are functional but are not
currently used in any experiments due to the completely at nature of the testbed. Each car is equipped with
either a long-range or a short-range forward-facing infrared sensing module. The long range sensors can
detect objects in the 10cm-140cm range and the short range sensors can only detect from 10cm-80cm. The
IR sensors have been previously characterized in master’s student David Hermina’s thesis [102]. The IR
sensors have been used in several algorithm tests to facilitate an emergency stop protocol and basic barrier
avoidance.

The cars have been tested with respect to a steering control algorithm originally proposed by Justh
and Krishnaprasad and modified by Morgan and Schwartz for obstacle avoidance [111] this algorithm was
featured on the second generation testbed [85]. In our new work we test peer to peer networking in which
communication is no longer all-all but rather uses low bandwidth information sharing through subnetworks.
One example shown in 5.1 uses a daisy-chain network to perform the steering control algorithm originally
written for all-all coupling.
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Figure 5.1: Three frames of an experimental run using daisy chain coupling. The cars are originally sepa-
rated in two groups (top left). During the run, the cars regroup (top right) and a common orientation before
exiting the testbed (bottom). Figure from [71].

2. Image Segmentation Through Efficient Boundary Sampling

Segmentation is one of the most important problems in image processing. Partitioning an image into a
small number of homogeneous regions highlights important features, allowing a user to analyze the image
more easily. Applications include medical imaging, computer vision, and geospatial target detection. Image
segmentation methods can be subdivided into region-based vs. edge-based methods. Region-based methods
include the Mumford-Shah and related Chan–Vese methods which both involve energy minimization with
a least squares fit of the data and a partition, between regions, whose length is minimized. Edge-based
methods include the well-known image snakes and Canny edge detector. Other approaches to segmentation
have also been effective. Statistical methods such as region competition rely on the fact that images have
repetitive features that can be learned and exploited to obtain a segmentation. A more recent fast statistical
method called Distance Cut is semi-supervised (the user identifies segments in each region) and is based on
weighted distances and kernel density estimation.

All of these methods involve, at some level, sampling all the pixels in an image. For applications
involving high dimensional or large data sets, it makes sense to subsample the image. This is especially
important for high resolution data where it can be prohibitive to perform calculations on every pixel in the
image. Bertozzi, Tartakovsky, Chen, and Wittman develop a segmentation method is designed for this kind
of application and is based on prior work for cooperative environmental sampling with robotic vehicles. The
algorithm has two levels, namely a global searching method, which locates a boundary point, and a local
sampling algorithm, which tracks the boundary using the global method as an initial point. Occasionally, if
the tracker strays too far from the boundary, additional uses of the global algorithm are needed. The local
algorithm is based on CUSUM statistics (see Figure 5.2). This work has been published in AMRX [30].
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Figure 5.2: A 100 × 100 image was corrupted with additive Gaussian noise, N(0,0.5). Left: Boundary
tracking without a change-point detection modification. Middle: Boundary tracking with the CUSUM algo-
rithm. Right: Threshold dynamics - global segmentation method.
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Chapter 6

Detection and Tracking of Covert Hostile
Activities

The research presented in this chapter has been performed by the group of Dr. Aram Galstyan at ISI in
collaboration with Dr. Paul Cohen. The major goal of this part of the project is to develop a scalable proba-
bilistic framework for performing detecting and tracking covert activities of hostile agents. This framework
will include an algorithmic toolkit for detecting and tracking hostile activities, methodology for analyzing
properties of those algorithms, and theoretical models that will address the general question, such as ac-
curacy and trackability and detectability. During this project, we have made significant progress in both
theoretical and computational aspects of the above problems. Below we summarize these achievements.

1. Modeling Activities via Hidden Markov Models

We have suggested Event–Coupled Factorial HMMs (EC–FHMM) as a generic framework for modeling ac-
tivities in Hats and other domains. EC–FHMM are different from more conventional HMMs with factorial
state representation in the way observations are generated. Specifically, what is observed in EC–FHHMs is
the interactions between different chains, as shown in Figure 1. In the context of the plan recognition prob-
lem, each chain describes an agent, while observations imply that two chains have interacted at a give time
step. Thus, in contrast with previously studied factorial HMMs and dynamic Bayesian networks (DBN),
where the topology of coupling between the chains is predetermined in advance, in our model the topology
is dynamic, which is well suited for capturing dynamically evolving networks. Furthermore, the interaction
between the chains is informed by the internal states of the nodes, while the states of those nodes themselves
are influenced by those interactions. This provides a feedback mechanism between individual and collective
dynamics, which translates into a very reach behavior of the model.

It is easy to see that after a sufficiently long time, approximate inference is infeasible with even moderate
N . Thus, one needs develop approximate methods for inference and learning. To this end, we have employed
the so called Boyen–Koller factorization, which works by approximating the true belief states by a product
of belief states over smaller clusters of variables. This approximation has been shown to produce good
results for a number of problems. Importantly, it has been established that the accumulative error caused by
this approximation is bounded by the mixing rates of the underlaying Markov dynamics.

Clearly, the accuracy of the approximation depends on the choice of the cluster variables. The perfect
accuracy is recovered when all the coupled variables belong to a single cluster. And the most aggressive
approximation corresponds to the situation where each agent is represented as a separate cluster. We have
previously shown that for simple Hats scenarios even the most aggressive approximation (i.e., each agent
is treated as a separate “cluster”) produces reasonable results provided that the prior knowledge about the
agents is sufficiently accurate.

In this phase, we have extended our work by considering iterative approach for the above collective
inference problem. The main premise behind the iterative scheme is the following: Assume we have used
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Figure 6.1: Time–rolled diagram of an Event–Coupled Factorial HMM.

the most aggressive factorization (one agent per cluster), and found the hidden state sequences for individual
agents. This can be done by the slightly modified Viterbi algorithm. Thus, if we have n agents, then after
one iteration we have estimated the hidden state sequences for those agents. Now, some of those estimates
will be more accurate, or more certain, than the others. Here the former means that the given hidden
state sequence has a higher likelihood under the assumed model parameters, while the latter means that the
entropy of the corresponding posterior distribution is low. Then, we can freeze the agent whose hidden state
sequence is the most accurate/certain, and repeat the iteration for the remaining n − 1 agents (in practice,
we can freeze not one but the top k agents). Indeed, our preliminary results suggests that this procedure
increases the accuracy over original, one–shot approach to the inference.

2. Co-Evolving Stochastic Blockmodel for Dynamic Networks

In EC-FHMM-s, each node is in a certain state, and interaction between different agents depend on those
states. Many situations, however, are better described by multi–faceted interactions, where nodes can bear
multiple latent roles that influence their relationships to others. MMSB accounts for such “mixed” interac-
tions, by allowing each node to have a probability distribution over roles, and by making the interactions
role–dependent [4].

We have developed a model named Co-evolving Mixed Membership Stochastic Blockmodel, or CMMSB,
which provides a dynamic generalization of the mixed membership model by explicitly modeling the vari-
ation in the node membership vectors. Previously, a dynamic extension of the MMSB (dMMSB) was sug-
gested in [57]. In contrast to dMMSB, where the dynamics was imposed externally, our model assumes that
the membership evolution is driven by the interactions between the nodes through a parametrized influence
mechanism. At the same time, the patterns of those interactions themselves change due to the evolution of
the node memberships.

Another advantage of our model over dMMSB is that the latter models the aggregate dynamics, e.g.,
the mean of the logistic normal distribution from which the membership vectors are sampled. CMMSB,
however, models each node’s trajectory separately, thus providing better flexibility for describing system
dynamics. Of course, more flexibility comes at a higher computational cost, as CMMSB tracks the trajec-
tories of all nodes individually. This additional cost, however, can be well justified in scenarios when the
system as a whole is almost static (e.g., no shift in the mean membership vector), but different subsystems
experience dynamic changes. One such scenario that deals with political polarization in the U.S. Senate is
presented in our experimental results section.

Consider a set ofN nodes, each of which can haveK different roles, and let ~πtp be the mixed membership
vector of node p at time t. Let Yt be the network formed by those nodes at time t: Yt(p, q) = 1 if the nodes
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p and q are connected at time t, and Yt(p, q) = 0 otherwise. Further, let Y0:T = {Y0, Y1, . . . , YT } be a time
sequence of such networks. The generative process that induces this sequence is described below.
• For each node p at time t = 0, employ a logistic normal distribution over a simplex sample.1

π0
p,k = exp(µ0

p,k − C(~µ0
p)), ~µ0

p ∼ N (~α0, A)

where C(~µ) = log(
∑

k exp(µk)) is a normalization constant, and ~α0, A are prior mean, and covari-
ance matrix.
• For each node p at time t > 0, the mean of each normal distribution is updated due to influence from

the neighbors at its previous step:
~αtp = (1− βp)~µt−1

p + βp~µS(p,t−1)

where ~µS(p,t−1) is average of weighted membership vector ~µ-s of the nodes which node p has met at
time t− 1
~µS(p,t−1) =

∑
q Y (p, q)wt−1

p←q~µq
βp describes how easily the node p is influenced by its neighbors. The membership vector at time t is
πtp,k = exp(µtp,k − C(~µtp)), ~µtp ∼ N (~αtp,Σµ)
where the covariance Σµ accounts for noise in the evolution process.
• For each pair of nodes p, q at time t, sample role indicator vectors from multinomial distributions:
~ztp→q ∼Mult(~z|~πtp), ~ztp←q ∼Mult(~z|~πtq)
Here ~zp→q is a unit indicator vector of dimension K, so that zp→q,k = 1 means node p undertakes
role k while interacting with q.
• Sample a link between p and q as a Bernoulli trial:
Yt(p, q) ∼ Bernoulli(y|(1− ρ)~ztp→qB

t~ztp←q)
where B is a K × K role–compatibility matrix, so that Bt

rs describes the likelihood of interaction
between two nodes in roles r and s at time t. When Bt is diagonal, the only possible interactions are
among the nodes in the same role. Also, ρ is a parameter that accounts for the sparsity of the network.

Thus, the coupling between dynamics of different nodes is introduced by allowing the role vector of a node
to be influenced by the role vectors of its neighbors.To benefit from computational simplicity, we updated ~π
by changing its associated ~µ. This update of ~µ is a linear combination of ~µ at its current state, and the values
of its neighbors. The influence is measured by a node–specific parameter βp, and wtp←q. βp describes how
easily the node p is influenced by its neighbors: βp = 0 means it is not influenced at all, whereas βp = 1
means the behavior is solely determined by the neighbors. Conversely, wtp←q reflects the influence that node
q exerts on node p, so that larger values correspond to more influence.

2.1. Inference and Learning

Under the Co–Evolving MMSB, the joint probability of the data Y0:T and the latent variables {~µt1:N , ~z
t
p→q :

p, q ∈ N,~ztp←q : p, q ∈ N} can be written in the following factored form. To simplify the notation, we
define ~ztp,q as a pair of ~ztp←q, and ~ztp→q

p(Y0:T , ~µ
0:T
1:N ,

~Z0:T
→ , ~Z0:T

← |~α,A,B, βp, wtp←q,Σµ) =
∏
t

∏
p,q

P (Yt(p, q)|~ztp,q, Bt)P (~ztp,q|~µtp, ~µtq)

×P (~µt+1
p |~µtp, ~µS(p,t), Yt, βp)

∏
p

P (~µ0
p|~α,A) (6.1)

In Equation 6.1, the term describing the dynamics of the membership vector is defined as follows2:

P (~µtp|~µt−1
p , ~µt−1

S(p,t),Σµ, Yt, βp) = fG(~µtp − fb(~µt−1
p , ~µt−1

S(p,t)),Σµ) (6.2)

fG(~x,Σµ) =
1

(2π)k/2|Σµ|1/2
e−

1
2
xTΣµ−1x (6.3)

fb(~µ
t−1
p , ~µt−1

S(p,t)) = (1− βt−1
p )~µt−1

p + βt−1
p ~µt−1

S(p,t) (6.4)

1We found that the logistic normal form of the membership vector suggested in [57] led to more tractable equations compared
to the Dirichlet distribution.

2For simplicity, we will assume Σµ is a diagonal matrix.
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Algorithm 1 Variational EM
Input: data Yt(p, q), size N,T,K
Initialize all {~γ}t, {σ}t
Start with an initial guess for the model parameters.
repeat

repeat
for t = 0 to T do

repeat
Initialize φtp→q, φ

t
p←q to 1

K for all g, h
repeat

Update all {φ}t
until convergence of {φ}t
Find {σ}t, {~γ}t
Update all {ζ}t

until convergence in time t
end for

until convergence across all time steps
Update hyper parameters.

until convergence in hyper parameters

Performing exact inference and learning under this model is not feasible. Thus, one needs to resort to
approximate techniques. Here we use a variational EM [19, 189] approach. The main idea behind variational
methods is to posit a simpler distribution q(X) over the latent variables with free (variational) parameters,
and then fit those parameters so that the distribution is close to the true posterior in KL divergence.

DKL(q||p) =

∫
X
q(X) log

q(X)

p(X,Y )
dX (6.5)

Here we introduce the following factorized variational distribution:

q(~µ0:T
1:N , Z

0:T
→ , Z0:T

← |~γ0:T
1:N ,Φ,Φ) =

∏
p,t

q1(~µtp|~γtp,Σt
p)×

∏
p,q,t

(q2(~ztp→q|~φtp→q)q2(~ztp←q|~φtp←q)) (6.6)

where q1 is the normal distribution, and q2 is the multinomial distribution, and ~γtp,Σ
t
p,
~φtp→q,

~φtp←q are the
variational parameters. Intuitively, φtp→q,g is the probability of node p undertaking the role g in an interaction
with node q at time t, and φtp←q,h is defined similarly. Note that in the E–step, we need to compute the
expected value of log[

∑
k exp(µk)] under the variational distribution, which is problematic. Toward this

end, we introduce N additional variational parameters ζ, and replace the expectation of the log by its upper
bound induced from the first-order Taylor expansion:

log[
∑

exp(µk)] ≤ log ζ − 1 +
1

ζ

∑
exp(µk) (6.7)

The variational EM algorithm works by iterating between the E–step of calculating the expectation
value using the variational distribution, and the M–step of updating the model (hyper)parameters so that
the data likelihood is locally maximized. The pseudo-code is shown in Algorithm 1, and the details of the
calculations are discussed below.

2.2. Variational E-step

In the variational E–step, we minimize the KL distance over the variational parameters. Taking the derivative
of KL divergence with respect to each variational parameter and setting it to zero, we obtain a set of equations
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that can be solved via iterative or other numerical techniques. For instance, the variational parameters
(~φtp→q,

~φtp←q), corresponding to a pair of nodes (p, q) at time t, can be found via the following iterative
scheme:

φtp→q,g∝ exp(γtp,g)×
∏
h

(B(g, h)Yt(p,q)(1−B(g, h))1−Yt(p,q))φ
t
p←q,h (6.8)

φtp←q,h∝ exp(γtq,h)×
∏
g

(B(g, h)Yt(p,q)(1−B(g, h))1−Yt(p,q))φ
t
p→q,h (6.9)

In the above equations, φtp→q,g and φtp←q,h are normalized after each update. Note also that Eqs. 6.8 and 6.9
are coupled with each other as well as with the parameters γtp,g, γtq,h.

For the variational parameters Σt
p, we have for the diagonal components (σtp,1, σ

t
p,2, ...σ

t
p,k):

η2
k

σtp,k
= 1 + (1− βp)2 +

∑
q

Yt(p, q)β
2
qw

t
q←p

2
+ 2η2

k(N − 1)
σtp,k
ζtp

exp(γtp,k +
(σtp,k)

2

2
), (6.10)

where ηk is the diagonal component of the covariance matrix Σµ. Similarly, we obtain equations for the
variational parameters γ-s. Generally, those equations are different for γ0

p,g, γTp,g, and γtp,g, 0 < t < T .
Since those equations are too cumbersome, here we simply note that their general form is:

~γtp = f(~γt−1
p , ~γt+1

p , ~γtq,
~φtp→q,

~φtq←p, ζ
t
p,Σ

t
p), (6.11)

Thus, the parameter ~γtp depends on its past and future values, ~γt−1
p and ~γt+1

p , as well as the parameters of
its neighbors. Finally, for the variational parameters ζ we have

ζtp =
∑
i

exp(γtp,i +
σtp,i

2

2
) (6.12)

Note that the above equations can be solved via simple iterative update as before. To expedite convergence,
however, we combine the iterations with Newton–Raphson method, where we solve for individual parame-
ters while keeping the others fixed, and then repeat this process until all the parameters have converged.

2.3. Variational M step

The M-step in the EM algorithm computes the parameters by maximizing the expected log-likelihood found
in the E-step. The model parameters in our case are: Bt, the role-compatibility matrix, the covariance matrix
Σµ, βp for each node, wtp←q for each pair, ~α, and A from the prior.

If we assume that the time variation of the block compatibility matrix is small compared to the evolution
of the node attributes, we can neglect the time dependence in B, and use its average across time, which
yields:

B̂(g, h) =

∑
p,q,t Yt(p, q) · φtp→q,gφtp←q,h∑

p,q,t φ
t
p→q,gφ

t
p←q,h

(6.13)

Likewise, for the update of diagonal components of the noise covariance matrix Σµ,

η̂k =
1

N(T − 1)
Eq[
∑
p,t

(µtp,k − (1− β)µt−1
p,k − βµS(p,t−1),k)

2] (6.14)

Similar equations are obtained for βp and wtp←q. The update equation of βp and wtp←q is a function of γ and
σ which are related to the transition for specific node p. Since these equations are rather involved, they will
be provided elsewhere.
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The priors of the model can be expressed in closed form as below:

~α0 =
1

N

∑
p

~γ0
p (6.15)

ak =

√
1

N

∑
(γ2
p,k + σ2

p,k − 2α0
kγp,k + α0

k
2
) (6.16)

2.4. Results for US Senate Co-Sponsorship Network

We have also performed some preliminary experiments for testing our model against real–world data. In
particular, we used senate co–sponsorship networks from the 97th to the 104th senate, by considering each
senate as a separate time point in the dynamics. There were 43 senators who remained part of the senate
during this period. For any pair of senators (p, q) in a given senate, we generated a directed link p→ q if p
co-sponsored at least 3 bills that q originally sponsored. The threshold of 3 bills was chosen to avoid having
too dense of a network. With this data, we wanted to test (a) to what extent senators tend to follow others
who share their political views (i.e., conservative vs. liberal) and (b) whether some senators change their
political creed more easily than others.

The number of roles K = 2 was chosen to reflect the mostly bi–polar nature of the US Senate. The
susceptibility of senator p to influence is measured by the corresponding parameter βp, which is learned
using the EM algorithm. High β means that a senator tends to change his/her role more easily. Likewise, the
power of influence of senator q on senator p is measured by the parameter wtp←q, where wtp←q1 > wtp←q2
means senator q1 is more influential on senator p than senator q2. Here the direction of the arrow reflects
the direction of the influence which is opposite to the direction of link. To initialize the EM procedure, we
assigned the same β, and w to all the senators, and start with a matrix which is weighted at the diagonal for
B.

Another method for validation is to compare the degree of influence. Our model handles, and learns,
the degree of influence in the update equation. Sorting out influential senators is an area of active research.
Recently, KNOWLEGIS has been ranking US senators based on various criteria, including influence, since
2005. Since our data was extracted from the 97th senate to the 104th senate, direct comparison of the
rankings was impossible. Another study [101] ranked the 10 most influential senators in both parties who
have been elected since 1955. We compared our top 5 influential senators, and we were able to find 3
senators (Sen. Byrd, Sen. Thurmond, and Sen. Dole) in the list.

2.4.1. Interpreting Results

The role-compatibility matrix learned from the Variational EM has high values on the diagonal confirming
our intuition that interaction is indeed more likely between senators that share the same role. Furthermore,
the learned values of β showed that senators varied in their “susceptibility”. In particular, Sen. Arlen Spector
was found to be the most influenceable one, while Sen. Dole was found to be one of the most inert ones.
Note that while there are no direct ways of estimating the “dynamism” of senators, our results seem to agree
with our intuition about both senators (e.g., Sen. Spector switched parties in 2009 while Dole became his
party’s candidate for President in 1996).

To get some independent verification, we compared our results to the yearly ratings that ACU (American
Conservative Union), and ADA(Americans for Democratic Action) assign to senators 3. ACU/ADA rated
every senator based on selected votes which they believed to have a clear ideological distinction, so that high
scores in ACU mean that they are truly conservative, while lower score in ACU suggests they are liberal,
and for ADA vice versa. To compare the rating with our predictions (given by the membership vector) we
scaled the former to get scores in the range [0, 1].

3Accessible at http://www.conservative.org/,
http://www.adaction.org/
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Figure 6.2 shows the relationship between these scores and our mixed membership vector score, con-
firming our interpretation of the two roles in our model as corresponding to liberal/conservative. Although
those values cannot be used for quantitative agreement, we found that at least qualitatively, the inferred tra-
jectories agree reasonably well with the ACU/ADA ratings. This agreement is rather remarkable since the
ACU/ADA scores are based on selected votes rather than co–sponsorship network as in our data.
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Figure 6.2: Correlation between ACU/ADA scores and inferred probabilities.

Of course, we are most interested in correctly identifying the dynamics for each senator. We compare
our inferred trajectory of the most dynamic senator, and the inert senator to the scores of ACU, and ADA.
In Figure 6.3 the scores of ADA have been flipped, so that we can compare all of the scores in the same
measurement. However, since ACU/ADA scores are rated for every senator each year, the dynamics of
inference, and the dynamics of ACU/ADA scores cannot be compared one to one. Not all senators showed
high correlation of the trend like senator Specter, and Dole.
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Figure 6.3: Comparison of inference results with ACU and ADA scores: Sen. Specter (top) and Sen. Dole
(bottom).

2.4.2. Polarization Dynamics

The yearly ACU/ADA scores give a good comparison of the relative political position of senators scored
in each year. However, they are not very appropriate for comparison between years, a point illustrated by
the fact that the score is based on voting records for different bills in each year. Therefore, for validation of
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Figure 6.4: Polarization trends during 97th–104th US Congresses.

the dynamics we turn to another scoring system highly regarded by political scientists and used to observe
historical trends, the DW-NOMINATE score. For the time period of our study, [103] shows that the political
polarization of the senate was increasing. In particular, they show that the gap between the average DW-
NOMINATE score of Republicans and Democrats is monotonically increasing, as we show in Figure 6.4. In
fact, the polarization for the entire senate was stronger every year. This is due to the unbalanced seats in the
entire senate. In other words, our data had 22 Republican, and 21 Democratic, while for the entire senate,
majority out numbered minority by around 10 seats. For comparison, for each time step we took the average
of our inferred score for the 14 most and least conservative senators. As we show in Figure 6.4, our inferred
result agrees qualitatively with the results of [103], showing an increase in polarization for every senate in
the studied time-window. Since the DW-NOMINATE scores uses its own metric, and our polarization is
measured by the difference between upper average and lower average probability, we should not expect to
get quantitative agreement. We would like to highlight, however, that the direction of the trend is correctly
predicted for each of the eight terms.

3. Theoretical Analysis of Hidden Markov Models

Hidden Markov Models (HMM) provide one of the simplest examples of structured data observed through a
noisy channel. The inference problems of HMM naturally divide into two classes [55, 132]: i) recovering the
hidden sequence of states given the observed sequence, and ii) estimating the model parameters (transition
probabilities of the hidden Markov chain and/or conditional probabilities of observations) from the observed
sequence. The first class of problems is usually solved via the maximum a posteriori (MAP) method and its
computational implementation known as Viterbi algorithm [55, 132]. For the parameter estimation problem,
the prevailing method is maximum likelihood (ML) estimation, which finds the parameters by maximizing
the likelihood of the observed data.An alternative approach to parameter learning is Viterbi Training (VT),
also known in the literature as segmental K-means, Baum–Viterbi algorithm, classification EM, hard EM,
etc. Instead of maximizing the likelihood of the observed data, VT seeks to maximize the probability of the
most likely hidden state sequence.

During this project we have developed methods based on statistical physics of disordered systems that
allowed us to analyze asymptotic properties of inference methods in HMMs. Below we outline the main
elements of our approach and summarize our main findings.

3.1. Theoretical Analysis of Trackability

Despite its extensive use of Viterbi algorithm in many applications, its properties, and specifically, the
structure of its solution space, have received surprisingly little attention. On the other hand, it is clear that
choosing a single state sequence might be insufficient for adequately understanding the structure of the
inferred process. To get a more complete picture, one needs to know whether there are other nearly optimal
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sequences, how many of them, how they compare with the optimal solution, and so on. In our work, we have
shown that this can be related to the notion of trackability, which can be intuitively defined as one’s ability to
(accurately) track certain stochastic processes [37, 144]. This problem was addressed by Crespi et. al. [37]
for so called weak models, where the entries in the HMP transition and emission matrices are either 0 or 1.
They reported a sharp transition between the trackable and non–trackable regimes. Here trackable means
that the number of hypotheses that can explain given observation sequence grows at most polynomially
with the length of the sequence, whereas non–trackable means that the number of such hypotheses grow
exponentially.

For more general stochastic processes, an information-theoretical characterization of trackability was
suggested in [144]. Within this approach, the accuracy is characterized by the probability Pr[x̂ 6= x] of the
estimated sequence x̂ not being equal to the actual one, while the structure of the solution space is described
via the number of elements |Ω| in the (conditional) typical set Ω of x sequences given an observed sequence
y (complexity).

Note that whereas the accuracy and the complexity measures of [144] deteriorate even for a small (but
generic) noise intensity, so that a process is trackable only in the complete absence of noise. During this
phase of work, we have suggested an alternative measure for trackability, that is more intuitive in the sense
that it allows a finite amount of noise. Namely, we suggested to augment the notion of trackability with the
particular inference method being used. Generally, the structure of an inference method can be characterized
by the accuracy of the estimation, and the number N (y) of solutions x̂(y) that the method can produce in
response to a given sequence y. For instance, an HMM process can be said to be trackable under Viterbi (or
more generally, Maximum a Posteriori, or MAP) inference if it yields at most polynomial (in the observation
length) number of solution with reasonable accuracy.

In our MURI work we have studied the structure of MAP inference for the simplest binary, symmetric
HMM, by reducing it to the Ising model in random fields. In this way, the average cost−∑yPr(y)Pr(x̂(y)|y)
of MAP and the logarithm of the number of solutions

∑
yPr(y) lnN (y) relate, respectively, to the energy

and the entropy of the Ising model at the zero temperature. Consider a binary, discrete-time Markov stochas-
tic process X = (X1, X2, . . . , XN ). Each random variable Xk has only two realizations xk = ±1. The
Markov feature implies

p(x) =
∏N

k=2
p(xk|xk−1)p(x1), (6.17)

where p(xx|xk−1) is a time-independent transition probability of the Markov process. For the considered
binary symmetric situation it is parameterized by a single number 0 < q < 1, p(1|1) = p(−1|− 1) = 1− q,
p(1| − 1) = p(−1|1) = q, and the stationary distribution is pst(1) = pst(−1) = 1

2 . Furthermore, the noise
process is assumed to be memory-less, time-independent and unbiased:

p(y|x) =
∏N

k=1
π(yk|xk), yk = ±1 (6.18)

where π(−1|1) = π(1| − 1) = ε, π(1|1) = π(−1| − 1) = 1 − ε, and ε is the probability of error. Here
memory-less refers to the factorization in (6.18), time-independence refers to the fact that in (6.18) π(...|...)
does not depend on k, while unbiased means that the noise acts symmetrically on both realizations of the
Markov process: π(1| − 1) = π(−1|1).

It can be shown that by appropriate parameterization, the MAP estimation is identical to minimizing the
following Ising Hamiltonian:

H(y,x) = −J
∑N

k=1
xkxk+1 − h

∑N

k=1
ykxk, (6.19)

where 2J = ln[(1 − q)/q] and 2h = ln[(1 − ε)/ε]. The (positive) factor J in (6.19) is the spin–spin
interaction constant, and h is determined by the observations.
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The expected number of ground–state configurations (e.g., sequences x1, x2, ...xN ) that minimizes the
above Hamiltonian can be related to the zero–temperature thermodynamic entropy Θ,

Θ =
∑

y
p(y) lnN (y). (6.20)

Thus, a finite Θ
N means that there are exponentially many outcomes of minimizing H(y,x) over x. Further-

more, let us introduce free energy (T is the temperature, and β = 1/T )

F (J, h, T ) = −T
∑

y
p(y) ln

∑
x
e−βH(y,x;J,h), (6.21)

Then the entropy is given as Θ = −∂TF |T→0. We can also define the overlap between observed and inferred
sequences, which is given by v = 1

N ∂hF .
The quantities defined above can be calculated exactly. Our main results can be stated as follows:

For small noise intensities, defined by ε < q/2, the inferred state sequence coincides with the observation
sequence, and hence there is no difference between MAP and Maximum Likelihood (ML) estimations, as the
solution is observation–dominated. While it was expected that the two methods agree for a vanishing noise,
the fact of their exact agreement for a finite range of the noise is non-trivial. In this regime, the entropy
is identically zero, which defines a trackable process. Furthermore, upon increasing the noise intensity
the MAP solution switches between different operational regimes that are separated by first–order phase
transitions. In particular, a first-order phase-transition separates trackable and non–trackable regimes. At this
transition point the influence of the prior information becomes comparable to the influence of observations.
This is shown in Figure 6.5(a) and 6.5(b)
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Figure 6.5: MAP characteristics versus the noise intensity in the regimes m = 1, 2, 3 for q = 0.24: (a)
Overlap (b) Entropy θ

ln 2 . In (a) the open squares represent simulation results, obtained by running the
Viterbi algorithm and calculating the respective quantities directly. We used sequences of size 104, and
averaged the results over 100 random trials.

There are several directions for further developments. For instance, it will be interesting to generalize the
analysis presented here beyond the binary hidden Markov processes considered here. In this case, the MAP
optimization problem can be mapped to a Potts model. We would like to note that the behavior observed in
the simple binary model can be explained by the emergence of a finite fraction of “frustrated” spins, where
the frustration can be attributed to two competing tendencies – accommodating observations on one hand,
and the hidden (Markovian) dynamical model on the other. Since this mechanism is rather general, we
believe that most features of the MAP scheme uncovered here via an exact analysis of the simplest binary
model will survive in more general situations.

3.2. Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs

As we have mentioned above, there are two main method for parameter estimation for HMMs.The maxi-
mum likelihood (ML) estimation finds the parameters by maximizing the likelihood of the observed data,
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whereas Viterbi Training (VT) seeks to maximize the probability of the most likely hidden state sequence.
Maximizing VT objective function is hard, so in practice it is implemented via an EM-style iterations be-
tween calculating the MAP sequence and adjusting the model parameters based on the sequence statistics.
It is known that VT lacks some of the desired features of ML estimation such as consistency, and in fact,
can produce biased estimates [55]. However, it has been shown to perform well in practice, which explains
its widespread use in applications such as speech recognition [17], unsupervised dependency parsing [158],
and so on. It is generally assumed that VT is more robust and faster but usually less accurate, although for
certain tasks it outperforms conventional EM [158].

The current understanding of when and under what circumstances one method should be preferred over
the other is not well–established. For HMMs with continuos observations, Ref. [105] established an upper
bound on the difference between the ML and VT objective functions, and showed that both approaches pro-
duce asymptotically similar estimates when the dimensionality of the observation space is very large. Note,
however, that this asymptotic limit is not very interesting as it makes the structure imposed by the Markovian
process irrelevant. A similar attempt to compare both approaches on discrete models (for stochastic context
free grammars) was presented in [142]. However, the established bound was very loose.

In this project, one of our goals was to understand, both qualitatively and quantitatively, the difference
between the two estimation methods. We develop an analytical approach based on generating functions
for examining the asymptotic properties of both approaches. Previously, a similar approach was used for
calculating entropy rate of a hidden Markov process [5]. We have provided a non-trivial extension of the
methods that allows to perform comparative asymptotic analysis of ML and VT estimation. It was shown that
both estimation methods correspond to certain free-energy minimization problem at different temperatures.
Furthermore, we demonstrated the approach on a particular class of HMM with one unambiguous symbol
and obtain a closed–form solution to the estimation problem. This class of HMMs is sufficiently rich so as
to include models where not all parameters can be determined from the observations, i.e., the model is not
identifiable [55].

Our man results are as follows: In contrast to the ML approach that produces continuously degenerate
solutions, VT results in finitely degenerate solution that is sparse, i.e., some [non-identifiable] parameters
are set to zero, and, furthermore, converges faster. Note that sparsity might be a desired feature in many
practical applications. For instance, imposing sparsity on conventional EM-type learning has been shown to
produce better results part of speech tagging applications [180]. Whereas [180] had to impose sparsity via
an additional penalty term in the objective function, in our case sparsity is a natural outcome of maximizing
the likelihood of the best sequence. While our results were obtained on a class of exactly-solvable model, it
is plausible that they hold more generally.

The fact that VT provides simpler and more definite solutions—among all choices of the parameters
compatible with the observed data—can be viewed as a type of the Occam’s razor for the parameter learning.
Note finally that statistical mechanics intuition behind these results is that the a posteriori likelihood is
(negative) zero-temperature free energy of a certain physical system. Minimizing this free energy makes
physical sense: this is the premise of the second law of thermodynamics that ensures relaxation towards
a more equilibrium state. In that zero-temperature equilibrium state certain types of motion are frozen,
which means nullifying the corresponding transition probabilities. In that way the second law relates to the
Occam’s razor.

4. Semi–Supervised Clustering in Graphs

In recent years there has been a great deal of interest in modeling and understanding relational network–
structured data. While traditional learning methods assume data instances are independent and identically
distributed, relational learning takes into account non–independencies — in the form of links and relations
between different entities — and so extends learning to richly structured data. To represent relational data,
a number of different models have been proposed. One of the well–studied models for networked data that
has its roots in social network analysis is the so called stochastic block–model [69], where the nodes in the
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network are assigned to a number of groups (blocks). The main assumption is that the nodes in the same
group have similar attributes, and are structurally equivalent in the sense that they have the same pattern of
links in the networks. More recent work has suggested “softer” mixed membership models where nodes can
be associated with several groups simultaneously [4].

Often, class membership information is not available, and one needs to use statistical inference to recover
the latent structures. An important question then is to what extent this can be accomplished. Consider, for
instance, a simple block–model with two equal–sized groups , which can be characterized by two numbers
p and r – probability of a link within a group and between the groups, respectively. Thus, each node is
connected, in average, with pN and rN nodes within the same cluster and across the clusters, respectively,
where N is the number of nodes in each group. An important question is how well one can recover the
latent group structure through statistical inference in the limit of large N . The answer to this question
is straightforward for dense networks, where the network connectivity scales linearly with N . Indeed, it
has been shown that the clusters in this planted partition model can be recovered with high accuracy in
polynomial time if p− r > n−1/2+ε [34]. Thus, we can say that the detection threshold converges to p = r
in the limit N →∞.

The situation can be significantly different for sparse graphs, where the average connectivity remains
finite as N → ∞, p = α/N , r = γ/N , where α and γ are average connectivity with and between the
clusters. Indeed, recently it was shown [134] that for sparse block–structured networks with a given within–
cluster connectivity α there is a critical between–class connectivity γc < α so that for any γ > γc clusters
cannot be recovered by better than random accuracy in the asymptotic limit. More specifically, it was
demonstrated that the model is characterized by a phase transition from detectable to undetectable regimes
as one increases the overlap between the clusters. Clearly, this type of behavior is undesirable as it signals
inference instabilities – large fluctuations in accuracy in response to small shifts in the parameters.

In this project, we have shown that this instability can be suppressed if one knows the correct group
labels for a finite fraction of nodes. This can be viewed as a semi–supervised version of the problem, as
opposed to an unsupervised version where the only available information is the observed graph structure.
Generally, graph-based clustering methods can utilize two types of background knowledge – correct cluster
group assignment for a subset of nodes, or pair–wise constraints in the form of must-link (cannot-links),
which imply that pair of nodes must be (cannot be) assigned to the same group. Below we describe our
studies that examine the impact of such pair-wise constraints on inference.

4.1. Model

Let A be the observed adjacency matrix of interaction graph ofN nodes so thatAij = 1 if we have observed
a link between nodes i and j, and Aij = 0 otherwise. Within the stochastic block–model, the nodes in the
network are assigned to a number of groups (blocks), and and the probability of a link between two nodes
depends on their group membership. In the simple symmetric bi–cluster scenario considered here, the model
is characterized by two numbers – probability of a link within and across the groups, defined as p and r,
respectively. The conditional distribution of observation for a given configuration x reads

p(A|x) = pc+ [1− p]c−rd+ [1− r]d− (6.22)

Here c+, d+ (c−, d−) are the total number of observed (missing) links within and across the groups,

c+ =
∑

i,j
Aijδxi,xj , c− =

∑
i,j

(1−Aij)δxi,xj (6.23)

d+ =
∑

i,j
Aij(1− δxi,xj ) , d− =

∑
i,j

(1−Aij)(1− δxi,xj ), (6.24)

where δij = 1 if i = j and δij = 0 otherwise. Let us define JNL = ln[(1−p)/(1−r)], JL = ln[p/r]+JNL.
Then the log of the joint distribution over both observed and hidden variables can be written as follows:

H(x,A) = − ln[p(A|x)p(x)] = −
∑

i>j
JLAijδxi,xj +

∑
i>j
JNLδxi,xj +Hπ(x) (6.25)
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Here JL and JNL stand for the contributions from observed links and non–links, respectively, while the last
term Hπ(x) encodes prior information about the latent structure one might have. In the scenario considered
below, we assume that the cluster sizes are known a priori. This constraint can be forced by the appropriate
choice of Hπ(x), so that any clustering arrangement that violates the size constraint will be disallowed.
Then it is easy to check that the second term amounts to a constant that can be ignored. Furthermore, since
below we are interested in the minimum of H(x,A), we can set JL = 1 without loss of generality.

For a given parameter values, and a given observed graph, minimizing the above expression is equivalent
to maximum a posteriori estimation of the latent structure. The following remark is due: When p and r are
chosen irrespective of N (so that average number of links per nodes scales linearly with N ), then we expect
the group structure to be recovered with high accuracy if N is sufficiently large [34]. However, many real–
world networks are sparse. To account for this, we introduce average number of neighbors within and across
the groups, α and γ, and let p = α/N , r = γ/N , so that the average connectivity remains finite as N →∞.
Below we study the accuracy of the inference depending on α and γ.

To proceed further, we make the bi–component nature of the network explicit by introducing separate
variables xi = ±1 and x̄i = ±1 (i = 1, . . . , N ) for two groups. Then Eq. 6.25 is reduced to the following
Ising Hamiltonian (aside from an unessential scaling factor):

H = −
N∑
i<j

Jijxixj −
N∑
i<j

J̄ij x̄ix̄j −
N∑
i,j

Kijxix̄j +Hπ(x) . (6.26)

Here Jij and J̄ij are the elements on two diagonal blocks of the matrix A describing the connectivity within
each cluster, whereas Kij-s are the elements on the (upper) off–diagonal block of A that link nodes across
the clusters. In the unsupervised block–model, they are random Bernoulli trials with parameters p and r.

To account for background information in the form of pairwise constraints, we use the following form
for the prior part of the Hamiltonian:

Hπ(x) = −wml
N∑
i<j

[θijxixj −+θ̄ij x̄ix̄j ] + wcl

N∑
i,j

φijxix̄j . (6.27)

where θij = 1 (θ̄ij = 1) if the corresponding pair of nodes are connected via a must–link constraint within
the first (second) cluster, and θij = 0 (θ̄ij = 0) otherwise. Similarly, φij = 1 if there is a cannot link
between corresponding nodes in respective clusters, and φij = 0 if there is no such link. Here wml and wcl
are the costs of violating a must–link and cannot–link constraints, respectively. For the sake of simplicity,
below we will choose wml = wcl = M > 1, where M is an integer.

Below we will assume that the constraints are introduced randomly and independently for each pair of
nodes. Namely, θij , θ̄ij-s and φij are Bernoulli trials with parameter f+ and f−, respectively. Then the
prior part of the Hamiltonian can be absorbed into 6.26 by the following choice for the distribution of the
couplings in 6.26:

p(Jij) = [1− p− f+]δ(Jij) + pδ(Jij − 1) + f+δ(Jij − wml) (6.28)

p(Kij) = [1− r − f−]δ(Kij) + rδ(Kij − 1) + f−δ(Kij + wcl) (6.29)

We are interested in the properties of the above Hamiltonian 6.26 in the limit of largeN . Below we study
it within the Bethe–Peierls approximation. Let P (h) (P̄ (h)) denote the probability of an internal (cavity)
field acting on an x (x̄) spin. Then we have according to the zero temperature cavity method [106]:

P (h) =

∫ ∏N

n=1
dJ0np(J0n)

∫ ∏N

n=1
dK0np(K0n)

∫ ∏N

k=1
P (hk)h. k

∏N

l=1
P̄ (gk)g. k

× δ

[
h−

∑N

k=1
φ[hk, J0k]−

∑N

k=1
φ[gk,K0k]

]
, (6.30)
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where φ[a, b] ≡ sign(a) min[ |a|, b ], and where gk (resp. hk) are the fields acting on the x-spin from x̄-spin
(respectively from other x-spins).

Once P (h) is found we obtain the first two moments of si as

m =

∫
P (h) sign(h), q =

∫
P (h) sign2(h), . . . , (6.31)

Here m is the magnetization averaged over the graph structure (including the constraints) (i.e., averaging
over Jij , J̄ij and Kij), and Gibbs distribution, which, at zero temperature case considered here it means
averaging over all configurations of xi and x̄i that in the thermodynamic limit have— the same (minimal)
values of the Hamiltonian H .

In (6.31) m is the magnetization, while q is called EA (Edwards-Anderson) order parameter; q differs
from 1 due to possible contribution∝ δ(h) in P (h). Note that the accuracy of the clustering (i.e., probability
that a node has been assigned to the correct cluster) is simply 1+|m|

2 . Thus, |m| = 1 corresponds to perfect
clustering, whereas m = 0 means that discovered clusters have only random overlap with the true cluster
assignments.

Equation 6.30 cannot be solved analytically for arbitrary M . Below we study two specific case: M = 2,
where some analytical insights can be obtained, and M = ∞, where we will employ population dynamics
to study properties of P (h).

First, we consider the case of soft constraints M = 2. The results are shown in Figure 6.6(a) where
we plot the magnetization m as a function of α for γ = 1. For ρ = 0, which corresponds to unsupervised
scenario, there is a critical value of α below which the magnetization m is zero. Recall that the clustering
accuracy (i.e., fraction of correct cluster assignments) is given as 1+|m|

2 . Thus, for any α < αc the estimation
cannot do any better than random guessing. At a certain value of ρ, the detection threshold becomes α = γ.
If ρ is increases even further, the model has a non–zero magnetization even when α < γ. Note that this shift
suggests highly non–linear effect from the added constraints depending on the network parameters. Indeed,
when the connectivity is close to its critical value, the constraints can significantly improve the clustering
accuracy by moving the system away from the critical regime. And when the system is away from the
critical region to start with, then the addition of the constraints might yield no improvement at all compared
to the unsupervised scenario.
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Figure 6.6: (a) Magnetization m vs. α for different ρ. (b) Detectable–non detectable boundary for different
ρ.

In Figure 6.6(b) we plot the detection boundaries on (α, γ) plane for different values of ρ. For each value
of ρ, the corresponding boundary γc(α; ρ)separates two regimes, so that points below (above) the separator
correspond to detectable (undetectable) clusters. The diagonal line α = γ is drawn for comparison. In
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the unsupervised case, the detection boundary starts at (α, γ) = (0, 1), and asymptotically behaves as
α − γ ∝ √α+ γ for large α + γ. One can see that the presence of supervision keeps the shape of the
boundary intact, and simply moves it upwards. Thus, for any fixed α, one can shift the threshold to γ = α
(and beyond) by labeling appropriate number of edges. Note also that for a fixed number of labeled edges,
the impact is stronger for sparser graphs, and diminishes as the link density increases.

We now consider the case of hard constraints, by setting M = ∞ 4. In this case, the cavity equa-
tion involves all the order parameters, which makes its analysis more complicated. Instead, we address
this case by solving the cavity equation using population dynamics [106]. The results are depicted in Fig-
ure 6.7(a),6.7(b). We also compare our results to simulations using synthetic data. After generating random
graphs of size N = 25, 000, we find the ground state of the Hamiltonian 6.26 using simulated annealing.

For a subset of nodes connected by labeled edges, we can determine the relative group membership for
any pair in the group due to the transitivity of the constraints. Therefore, finding node assignments that
satisfy hard link constraints on a graph amounts to a two-coloring problem and can be done efficiently. As
we add random edges to a graph, the size of the connected clusters is well-known. For ρ < 1, most clusters
are disconnected and the size of the largest cluster is O(log(N)). At ρ = 1, we reach the “percolation
threshold” where the size of the largest cluster goes like O(N2/3). Once ρ > 1, O(N) nodes belong to one
giant connected component. We will investigate the consequences of these different regimes below.

Looking at the results of Figure 6.7(a), we see that without supervision, as we vary the within-cluster
connectivity, α, there is a sharp detection threshold (clusters are detectable when m > 0). For small
amounts of supervision, ρ < 1, the impact of the constraints is to shift the detection threshold to smaller
values of α. Qualitatively, this is no different than the effect of adding more unlabeled edges within clusters.
This behavior is expected, since adding hard constraints is equivalent to studying the same unsupervised
clustering problem on a renormalized graph (e.g., merging two nodes that are connected via constraints).
This is in contrast to results for prior information on nodes in [5], which showed that even small amounts of
node supervision shifted the detection threshold to its lowest possible value α = γ.

As ρ → 1, there is a qualitative change in our ability to detect clusters. A large number of nodes,
O(N2/3), are connected by labeled edges. If we take the relative labeling of nodes in this largest group
as the “correct” one, than we have a situation similar to node supervision, which, as discussed, moves the
detection threshold to α = γ. While this large labeled component suffices to create non-zero magnetization
in finite graphs (as seen from the simulated annealing results), as N gets large, the effect of this component
diminishes. For ρ > 1, we see that the fraction of nodes contained in the largest labeled component suffice
to produce non-zero magnetization even at the group-defining threshold α = γ.

In Figure 6.7(b), we investigate the location of the detection threshold in the (α, γ) plane. For ρ < 1 we
see that for all values of γ the threshold is simply shifted to a lower value of α, similar to the M = 2 case.
As ρ → 1, the detection threshold approaches the line that defines cluster structure α = γ. For ρ > 1, a
fraction of nodes are fixed by the edge constraints. Therefore, magnetization is nonzero even when α = γ.

Note that according to our results, addition of constraints does not provide automatic improvement over
the unsupervised case. Indeed, when the cost of violating constraints is finite, the only impact of the added
pair–wise constraints is to lift the detection boundary. Thus, whether adding constraints is beneficial or not
depends on the network parameters. More specifically, consider an unsupervised clustering problem with
network connectivities α and γ, and let ∆(ρ) = γ − γc(α, ρ), where γc(α) is the (unsupervised) detection
boundary discussed in Section 1. Then adding ρ constraints per node will be beneficial only if it levitates
the detection boundary above the α = γ line. Not also that for a fixed ρ, the impact of semi–supervision
diminishes for large α, γ limit, and the detection threshold re–emerges.

4Note that fixing M to some large but finite number of O(N) will guarantee that all the constraints are satisfied.
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Figure 6.7: (a) Magnetization plotted against α for different ρ. Lines are generated from population dy-
namics and points are generated from simulated annealing. From bottom to top we have ρ = 0, 0.5, 1, 2.
(b) Location of the m = 0 threshold on the (α, γ) plane. Dashed line corresponds to the analytic result
for ρ = 0 and the solid line is α = γ. Squares (circles) calculated using population dynamics at ρ = 0.5
(ρ = 1).
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Chapter 7

Fighting Crime

The work presented in this chapter has been done by the group of Dr. Bertozzi and Dr. Brantingham.

1. Geographic Profiling from Kinetic Models of Criminal Behavior

UCLA postdocs George O. Mohler and Martin B. Short have considered the problem of estimating the prob-
ability density of the “anchor point” (residence, place of work, etc.) of a criminal offender given a set of
observed spatial locations of crimes committed by the offender. Starting from kinetic models of criminal
behavior, they derive the probability density of anchor points using the Fokker-Planck equation and Bayes’
Theorem. Here geographic inhomogeneities such as housing densities and geographic barriers (bodies of
water, parks, etc.) are naturally incorporated into the probability density estimate. The resulting equations
are elliptic PDEs that can be solved efficiently using Multigrid or other standard computational techniques.
They test their methodology against distance to crime data provided by the Los Angeles Police Depart-
ment. Their results highlight the benefits of incorporating elements of criminal behavior and geographic
inhomogeneities into profiling estimates.

2. PDE Models of Crime

2.1. Modeling of Urban Crime Hotspots

Terrorist and insurgent activities have a distinct parallel to urban crime in that they are constrained by the
same need to encounter victims and targets in the absence of effective security. Therefore, the fundamental
‘physics’ of criminal offenses may be classified according to the mobility of offenders and potential tar-
gets/victims. Some crime types may arise under a full range of physical conditions (e.g., homicide), while
others are more constrained (e.g., burglary). A similar classification can be developed for terrorist and insur-
gent attacks. The models we have developed to study crime should transfer readily to the study of terrorist
and insurgent activity and event patterning. Moreover, we have allied ourselves with LAPD and Long Beach
PD in order to develop direct comparisons between our models and real field data from spatially extended
urban environments. As in the case of criminal offenders, routine mobility patterns are the proximate cause
of how terrorists and insurgents encounter, select and attack targets. We believe that the methods we have
developed to study crime pattern formation may serve as a foundation to predicting spatial and temporal pat-
terns in terrorist attack ranging from small-scale events (e.g., sniper, hostage taking) to larger-scale actions
including potential WMD attacks.

Criminologists have long known of the existence of crime “hotspots”: extended geographic regions
which display a higher than average rate of crime, at least temporarily. While empirical measurements of
such hotspots have been numerous, there has been little progress in understanding the precise mechanisms
underlying the formation and subsequent dynamics of these spots. In this regard, perhaps the most well-
developed theories have been the exact- and near-repeat crime hypo theses, which posit that a geographic
location and its surrounding areas experience greater rates of criminal events for a period of time following
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an initial event. These hypotheses have been tested both by other researchers and ourselves using a variety
of crime data from around the world, and have been found to hold over a wide range of cities and crime
types.

It has been our goal, therefore, to create mathematical models based around these phenomena that may
shed light on how and why crime hotspots form, and may even enhance the predictive capability of law
enforcement agencies, allowing them to better utilize their limited resources. Toward this end, we have
thus far created two possible models of crime hotspot generation: an agent-oriented model, and a target-
oriented model. The former seeks to explain the empirical observations from first principles by simulating
the known behavior of real criminal agents within a landscape of targets, while the latter takes a more
empirical approach and uses the historical crime data in an area to predict future events there. Both of these
approaches will be explained below.

The agent-oriented model imagines a number of criminal agents that move around a virtual environment,
occasionally committing criminal acts as they encounter targets. Each target i within the environment has
an attractiveness value Ai associated with it. This attractiveness serves to bias crime in two way: higher
Ai values directly correspond to higher probabilities of an agent committing a crime when located at target
i, and agents prefer to move toward targets with higher Ai values when walking on the grid. In order to
capture the exact-repeat phenomenon noted above, Ai is temporarily increased after a crime event occurs at
target i. To model the near-repeat phenomenon, Ai is allowed to spatially spread to other targets j that are
near i. Finally, criminal agents “return home” after offending (they are removed from the grid), and each
location gives rise to new agents at a rate Γ.

The full mathematical model imagined in this discrete form possesses a number of parameters (seven),
and simulations based on this model can exhibit drastically different behavior depending upon the values
these parameters take. In essence, though, only three distinct regimes of behavior are observed: no hotspot
formation, transitory hotspot formation, or stationary hotspot formation (see Figure 7.1). To better under-
stand what parameter combinations lead to the various behavioral regimes, we have recast the discrete model
in continuum form, deriving two coupled partial differential equations to describe the system:

∂A

∂t
= η∇2A−A+A0 + ρA and (7.1)

∂ρ

∂t
= ~∇ ·

[
~∇ρ− 2ρ

A
~∇A
]
− ρA+A−A0 , (7.2)

where ρ represents the density of criminal agents, and η, A0, and A are the only three remaining parameters
of the system after the continuum limit is taken. Numerical integrations of Eqns. 7.1 and 7.2 result in
hotspot maps that are quite similar to those created via the fully discrete model for corresponding parameter
choices. This work has been published in the journal M3AS: Mathematical Models and Methods in the
Applied Sciences in a special issue on traffic, crowds, and swarms [150].

In addition to their numerical integration, we have performed a variety of analytical analyses of Eqns. 7.1
and 7.2. A linear stability analysis has provided us with the understanding of hotspot formation as a classic
dynamical instability, and given insights into what parameter regimes should lead to hotspot formation.
Specifically, we now know that if the parameters of the system are such that the inequality

A0 <
2

3
A− 1

3
ηA

2 − 2

3
A

√
ηA . (7.3)

holds, the system will exhibit hotspots. The size and spacing of these hotspots can also be determined by the
three continuum parameters. A weakly nonlinear analysis of the equations has also been performed, and the
results show that hotspots may arise via either supercritical or subcritical pitchfork bifurcations, depending
upon parameter values. The possibility of subcritical bifurcations allows for hysteresis effects within the
system, indicating that police action may be able to permanently destroy individual hotspots, even if the
police presence is eventually removed from the area. Finally, we have observed coarsening behavior within
this system, whereby a steady state comprised of n hotspots may spontaneously change to a state with fewer
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(a) no hotspots (b) transitory hotspots (c) stationary hotspots

Figure 7.1: Example output from simulations of the agent-oriented model. These figures illustrate the three
regimes of behavior observed in this system.

than n spots, even after very long periods of seemingly no change. This could account for the sometimes
rapid disappearance or emergence of hotspots observed in real crime data.

PhD student Nancy Rodriguez, under the direction of co-PI Bertozzi, developed a local existence and
uniqueness of solutions to the continuum version of this model, a coupled system of partial differential
equations, as well a continuation argument. She compared this PDE model with a generalized version of the
Keller–Segel model for chemotaxis as a first step to understanding possible conditions for global existence
vs. blow-up of the solutions in finite time. Global well-posedness of the model is still an open problem
however this work develops the ground work and distinguishes the nonlinearities present in this model from
prior mathematical work on related problems of bacterial chemotaxis. The paper by Rodriguez and Bertozzi
has been published in M3AS [137].

2.2. Control of Hotspots by Law Enforcement

We extend an agent-based model of crime-pattern formation initiated in [150] by incorporating the effects
of law enforcement agents. We investigate the effect that these agents have on the spatial distribution and
overall level of criminal activity in a simulated urban setting. Our focus is on a two-dimensional lattice
model of residential burglaries, where each site (target) is characterized by a dynamic attractiveness to
burglary and where criminal and law enforcement agents are represented by random walkers. The dynamics
of the criminal agents and the target-attractiveness field are, with certain modifications, as described in [150].
Here the dynamics of enforcement agents are affected by the attractiveness field via a biasing of the walk, the
detailed rules of which define a deployment strategy. We observe that law enforcement agents, if properly
deployed, will in fact reduce the total amount of crime, but their relative effectiveness depends on the
number of agents deployed, the deployment strategy used, and spatial distribution of criminal activity. For
certain policing strategies, continuum PDE models can be derived from the discrete systems. The continuum
models are qualitatively similar to the discrete systems at large system sizes. This work was carried out by
Paul Jones as part of his PhD thesis under the direction of Lincoln Chayes and Jeff Brantingham.

2.3. Bifurcation Theory for Crime Hotspots

Short, Bertozzi, Brantingham and Tita developed non-linear analyses of a PDE model of crime hostpot
formation published during the previous MURI period. This work examines the non-linear stability of
crime hotspots form by fundamental behaviors of the diffusion of risk associated with crime in uniform,
target rich crime environments. They show that there are at least two types of parameter regimes that
produce either super-critical crime hotspots or sub-critical crime hotspots. Super-critical hotspots emerge in
linearly unstable regimes from small perturbations in crime and lead to apparent crime displacement when
existing hotspots are suppressed by police action. By contrast, sub-critical hotspots form in linearly stable
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Figure 7.2: (left) Cover of March 2, 2010 issue of PNAS. (right) Crime hotspot suppression figure from the
cover article [151]. Suppression results for the PDE system with parameters chosen to generate supercritical
or subcritical crime hotspots. (A) Suppression of supercritical crime hotspots. Shown is the configuration
of supercritical hotspots at timestep t = 100, just prior to the introduction of crime suppression. Crime
suppression is then introduced over the area of each visible hotspot, leading to the eradication of the original
hotspots but corresponding increases in risk in neighboring regions, seen at t = 120. The transient structure
at t = 120 resembles a hot ring solution surrounding the location of the original central hotspot. By the time
of the next suppression at t = 200, a new steady state featuring hotspots in positions adjacent to the original
ones has been achieved. (B) Suppression of subcritical crime hotspots. Shown is a central subcritical hotspot
at t = 100, just prior to the introduction of crime suppression. Crime suppression is then introduced over
the area of the hotspot, leading to the eradication of the hotspot by t = 120. No transient structures appear
in this case. Eventually suppression is lifted at t = 200 and the system quickly adopts the homogenous
steady state. Color scale shows red as higher crime area and blue as lower crime area.
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regimes from large perturbations in crime. When sub-critical hotspots are suppressed by police action they
do not reemerge (i.e., they dissipate) even when police pressure is removed. This is a hysteresis effect that is
shown in the non-linear analysis. The technical analysis is published in SIAM Journal on Applied Dynamical
Systems (SIADS). The general features of the model characteristics and its implications are discussed in the
March 2010 cover article of the Proceedings of the National Academy of Sciences (PNAS). See Figure 7.2.
It also received quite a lot of attention from the Scientific and International Press - see front section for
references.

2.4. Extension to Game Theory Models

The evolution of human cooperation has been the subject of much research, especially within the framework
of evolutionary public goods games, where several mechanisms have been proposed to account for persistent
cooperation. Yet, in addressing this issue, little attention has been given to games of a more adversarial
nature, in which defecting players, rather than simply free riding, actively seek to harm others. Short,
Brantingham and D’Orsogna [152] have developed a evolutionary game theoretic model that explores how
population composed of different criminal and reporting strategies evolve. They use the specific example
of criminal activity, recasting the familiar public goods strategies of punishers, cooperators, and defectors
in this light. They introduce a strategy “the informant” with no clear analog in public goods games and
show that individuals employing this strategy are a key to the emergence of systems where cooperation
dominates. They also find that a defection-dominated regime may be transitioned to one that is cooperation-
dominated by converting an optimal number of players into informants. They discuss these findings, the role
of informants, and possible intervention strategies in extreme adversarial societies, such as those marred
by wars and insurgencies. Simulations demonstrate that this idealized society has two stable equilibrium
points where the population consists of either (1) offenders/non-reporters and non-offenders/non-reporters
(“dystopia”), or (2) non-offenders/reporters and non-offenders/non-reporters (“utopia”). Informants who
commit crimes but will also report crimes that they themselves do not commit are not present in either of
these equilibria. However, simulation and an equivalent ODE system shows that informants are critical to
transitioning between dystopia and utopia. This work led to the formation of a new MURI team led by
Milind Tambe at USC starting this year. Current co-PIs Bertozzi and Brantingham are involved with this
program as are former postdocs D’Orsogna and Short.

2.5. Gang Rivalry Networks – a Mechanistic Approach

PhD students Rachel Hegemann and Laura Smith use an agent based model to investigate social and physical
geographic influences on gang rivalry network formation in the Eastern Los Angeles policing district of
Hollenbeck. The model includes basic movement routines based around known territory anchor points (‘set
spaces’) provided by the LAPD. Known physical boundaries such as highways are encoded into the model
and are treated as semi-permeable boundaries by the agents. Interactions are recorded between the agents to
produce simulated rivalry network. These simulated rivalry network are then compared against the known
rivalry network in Hollenbeck as well as network produced by alternative methods such as geographic
threshold graphs. This work also involves postdoc Alethea Barbaro and collaborators George Tita and
Shannon Reid at UC Irvine. It was recently published in Physica A [67].

2.6. Gang Territory Development Based on Graffiti Distributions

Barbaro, D’Orsogna and Chayes study the problem of gang territory formation by simulating an interacting
particle system on a lattice. The central hypothesis is that territory formation and defense occurs through
territorial marking, which gangs do through graffiti tagging. We show that gang territories can develop
in reaction to temporally and spatially evolving distributions of graffiti. We study a two-gang model in
which agents deposit distinct graffiti territorial markers, all graffiti decays in time, and agents condition
their movement patterns in response to graffiti distribution.. Using methods from statistical mechanics,
we prove a phase transition occurs in this system where random distribution of gang members suddenly
segregate into distinct territories.
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3. Maximum Penalized Likelihood Estimation and Data Fusion

!

Figure 7.3: Residential burglary in 2004 for an 18x18 km area of the San Fernando Valley, Los Angeles.
Point locations of crimes shown on the far left. Middle figures compare density estimation using MPLE and
TV regularization (left) with more traditional kernel based methods (right). Actual housing densities are
shown on the far right, which could be fused with the point process data of human activity, to create a more
accurate crime density map.

3.1. TV Regularized MPLE

Total Variation-based regularization, well established for image processing applications such as denoising,
was recently introduced for Maximum Penalized Likelihood Estimation (MPLE) as an effective way to
estimate non-smooth probability densities. While the estimates show promise for a variety of applications,
the non-linearity of the regularization leads to computational challenges, especially in multi-dimensions.
George Mohler, Andrea Bertozzi, Tom Goldstein and Stan Osher present a numerical methodology, based
upon the Split Bregman L1 minimization technique, that overcomes these challenges, allowing for the fast
and accurate computation of 2D TV-based MPLE (see Figure 7.3). We test the methodology with several
examples, including V-fold Cross Validation with large 2D data sets, and highlight the application of TV-
based MPLE to point process crime modeling. This work has been accepted in J. Computational and
Graphical Statistics.

3.2. Improving Density Estimation by Incorporating Spatial Information

The TV regularized MPLE method described above can be improved by incorporating additional spatial
information. We propose a set of Maximum Penalized Likelihood Estimation methods based on Total Vari-
ation and H1 Sobolev normregularizers in conjunction with a priori high resolution spatial data to obtain
more geographically accurate density estimates.We apply this method to a residential burglary data set of
the San Fernando Valley using geographic features obtained from satellite images of the region and housing
density information. This work was performed by Laura Smith and Matthew Keegan as part of their PhD
thesis work with advice from Todd Wittman, George Mohler and coPI Bertozzi. We have published a paper
in EURASIP J. on Advances in Signal Processing, special issue on Advanced Image Processing for Defense
and Security Applications, 2010. See Figure 7.4.

3.3. Filling in Missing Information in Gang Crime

Dynamic activity involving social networks often has distinctive temporal patterns that can be exploited in
situations involving incomplete information. Even when activity is highly stochastic, localized excitations in
parts of the network can help identify actors in cases of unknown origin. Pinpointing the source of unknown
activity in large social networks is a combinatorially complex problem that can be more easily computed via
a non-convex constrained optimization. Gang-related violent crimes pose a major problem for authorities in
large cities, where cycles of retaliatory violence can lead to short but intense periods of crime.

The UCLA Institute of Pure and Applied Mathematics Research in Industrial Projects for Students
(IPAM-RIPS) project team for 2010 worked on the problem of identifying unknown parties (gangs) in gang-
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Figure 7.4: These images are the density estimates for the San Fernando Valley residential burglary data.
(a) and (b) show the results of the current methods Kernel Density Estimation and TV MPLE, respectively.
The results from ourModified TV MPLE method and ourWeighted H1 MPLE method are shown in figures
(c) and (d), respectively. The color scale represents the number of residential burglaries per year per square
kilometer. Figure taken from [155]
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related violent incidents. Reports from LAPD indicate that a significant number of gang-related crimes in
Hollenbeck have unknown perpetrators with unknown gang affiliation. The RIPS-LAPD project developed
an algorithm that LAPD could use to predict the possible perpetrator’s gang in cases where the crime is
marked as gang-related but the suspect gang is not known. The algorithm uses crimes with complete infor-
mation to fill in missing data fields for crimes with incomplete information. Spatio-temporal information
about the crimes are used as well as information about gang territories and historical rivalries. The students
created prototype algorithm that produces an accurate prediction of the gangs involved in individual crimes.

This problem was studied in more detail by Alexey Stomakhin, Martin Short, and Andrea Bertozzi in
[159]. The authors considered a model in which the repeat activity between nodes of the network is modeled
by a temporal Hawkes process (Figure 1). Here, the nodes of the network represent individual street gangs
and the activities are violent crimes between the gangs, some of which are unsolved. The goal is to correctly
identify the gang affiliated with the unsolved crimes. The authors construct an energy functional inspired
by the true probabilistic likelihood associated with the Hawkes process that depends quadratically on the
probability that an unsolved crime was committed by a specific gang. They maximize this functional under
an l2 constraint using gradient flow. This problem is well-posed, and generally has a unique optimal
solution. The algorithm performs almost identically to a combinatoric approach for small datasets, but runs
in a fraction of the time; for large datasets, the combinatoric approach is computationally infeasible. For
artificial datasets with properties similar to those of the Los Angeles gang network, the algorithm places the
correct gang within the top 4% of likelihood approximately 80% of the time, highlighting the usefulness of
this method.

4. Self-exciting Point Process Models of Crime and Insurgent Violence

4.1. Self-exciting Point Process Modeling of Residential Burglaries

Highly clustered event sequences are observed in certain types of crime data, such as burglary and gang
violence, due to crime specific patterns of criminal behavior. Similar clustering patterns are observed by
seismologists, as earthquakes are well known to increase the risk of subsequent earthquakes, or aftershocks,
near the location of an initial event. We have developed a collaboration with Statistician Frederick Schoen-
berg at UCLA who is an expert on space-time clustering in seismology as modeled by self-exciting point
processes. Postdocs Mohler and Short, in collaboration with Brantingham and George Tita (UC Irvine
Criminologist) have developed a manuscript illustrating that these methods are well suited for crimino-
logical applications. They use residential burglary data, provided by the Los Angeles Police Department,
to illustrate the implementation of self-exciting point process models in the context of urban crime. For
this purpose they use a fully non-parametric estimation methodology to gain insight into the form of the
space-time triggering function and temporal trends in the background rate of burglary. This work has been
published in the J. of the Am. Statistical Assoc. [108].

4.2. Self-exciting Point Process Models for Gang Activity

Gang violence has plagued the Los Angeles policing district of Hollenbeck for over half a century. With
sophisticated models, police may better understand and predict the region’s frequent gang crimes. During
summer 2009 we organized a summer REU (research experience for undergraduates) project to address
whether self-excitation could be quantified in Hollenbeck’s gang rivalries. A self-exciting point process
called a Hawkes process was used to model rivalries over time. Figure 7.5 shows computed arrival rate
functions for the Locke-Lowell rivalry determined from police data and resulting numerical simulations that
can be performed in a model for this rivalry. While this is shown to

fit the data well, an agent based model is presented which is able to accurately simulate gang rivalry
crimes not only temporally but also spatially. Finally, the students compared random graphs generated by
the agent model to existing models developed to incorporate geography into random graphs. This work was
published in SIAM Undergraduate Research Online [52] by the team of students.

135



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

Figure 7.5: On top, a plot of the Locke-Lowell rivalry’s crimes over time with the respective arrival rate
function λ(t). On bottom, simulated crimes from a Hawkes process with the Locke-Lowell rivalry’s param-
eters and the corresponding rate function, λ(t). Figure from [52].

In summer 2010 Kym Louie, Mark Allenby and Marina Masaki comprised an undergraduate team men-
tored by Tim Lucas (Pepperdine) onsite at UCLA expanding on the work described above to include both
spatial dependence and directionality of the rivalry behavior. The group presented a model to simulate
directed crimes in the 33 gang system of Hollenbeck [6].

4.3. Self-exciting Point Process Models for Insurgent Activity

We recently purchased a copy of the Iraq Body Count Data, compiled by an organization dedicated to
accurately recording all civilian deaths in Iraq [35]. The number of fatalities linked to any event is not
an estimate by the organization, but a count corroborated by at least two reliable news sources. In the
data we consider, from March 20, 2003 to December 31, 2007, there are 15,977 events. Each entry in the
data contains a start date, end date, minimum number of deaths, maximum number of deaths, town and
possibly a district of where the event occurs. Our goal in this paper is to analyze temporal patterns of
civilian death reports. For this purpose we employ a branching point process model similar to those used
in earthquake analysis. Here the rate of events is partitioned into the sum of a Poisson background rate and
a self-exciting component in which events trigger an increase in the rate of the process. More specifically,
each event generated by the process in turn generates a sequence of offspring events according to a Poisson
distribution. Whereas the background rate is typically assumed to be stationary for seismic activity, such
an assumption is not valid in the context of civilian deaths in Iraq. We propose three simple adjustments to
account for background rate variation and compare the effectiveness of each model using Iraq Body Count
data from 2003 to 2007. Our results indicate that branching point processes are well suited for modeling the
temporal dynamics of violence in Iraq. This work was performed by PhD student Erik Lewis with help from
George Mohler and Andrea Bertozzi. Jeff Brantingham obtained the data and helped with interpretation of
the data by the mathematics. The work has just been published in Security Journal [86].
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Chapter 8

Theoretical Results in Quickest
Changepoint Detection

This chapter is intended to summarize our contributions in the theory of changepoint detection made with
the support of this grant. The work has been performed by the group of Dr. Tartakovsky.

1. The General Problem and Preliminaries

Throughout this chapter we will focus on the basic iid setting of the changepoint detection problem. The set-
ting assumes that one is able to sequentially gather a series of independent random observations, {Xn}n>1.
The observations are such that X1, X2, . . . , Xν are each distributed according to a known density f , and
Xν+1, Xν+2, . . . each adhere to a density g 6≡ f , also known. The time instant 0 6 ν <∞ is referred to as
the changepoint, and is assumed unknown; henceforth, ν = ∞ will mean that all Xn’s have density f , and
ν = 0 – that allXn’s have density g. The objective is to detect as quickly as possible that the change is in ef-
fect, subject to a constraint on the risk of sounding a false alarm. A sequential detection procedure is defined
as a stopping time T (defined with respect to the observed data), so that after observing X1, X2, . . . , XT it
is declared that a change may be in effect.

We will be interested in the following detection procedures. First, Page’s [119] CUmulative SUM
(CUSUM) chart. It is based on maximizing the likelihood ratio (LR), and can be defined as the stopping time
CA = inf{n > 1: Vn > A}, where Vn = max{1, Vn−1}Λn, n > 1, with V0 = 1, Λn = g(Xn)/f(Xn)
is the LR for the n-th data point, and A > 0 is a detection threshold, which determines the procedure’s
operating characteristics; hereafter in every definition of a detection procedure it will be assumed that
inf{∅} =∞.

Next, the Shiryaev–Roberts (SR) procedure. This procedure is due to the independent work of Shiryaev
[146, 148], who considered the problem of detecting a change in the drift of Brownian motion, and Roberts
[136], who studied detecting a change in the mean of an iid Gaussian sequence. The SR procedure is defined
by the stopping time

SA = inf{n > 1: Rn > A}, (8.1)

where A > 0 and

Rn = (1 +Rn−1) Λn, n > 1 with R0 = 0. (8.2)

Pollak [123] proposed to tweak the SR procedure by starting it off a random point, RQ0 , sampled
from {Rn}n>0’s quasi-stationary distribution. The cdf of this distribution, QA(x), is defined as QA(x) =
limn→∞ P∞(Rn 6 x|SA > n).
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Pollak’s [123] tweaked version of the SR procedure, known as the Shiryaev–Roberts–Pollak (SRP)
procedure, is defined by the stopping time

SQA = inf
{
n > 1: RQn > A

}
, (8.3)

where

RQn+1 = (1 +RQn ) Λn+1, n > 0, with RQ0 ∝ QA(x). (8.4)

The performance of a detection procedure is judged based on the desired optimality criteria. We will be
interested in two described below.

Henceforth, let Pk(·) and P∞(·) be the probability measures generated by the data {Xn}n>1, respec-
tively, when the changepoint is ν = k, 0 6 k <∞, and ν =∞. Let Ek[·] and E∞[·] denote the correspond-
ing expectations.

For a generic detection rule, T , the risk of sounding a false alarm is measured via the Average Run
Length (ARL) to false alarm defined as ARL(T ) = E∞[T ]; see Lorden [95]. Let

∆(γ) =
{
T : ARL(T ) > γ

}
(8.5)

be the class of procedures for which the ARL to false alarm is no less than the desired a priori set level
γ > 1.

The first optimality criterion we will be interested in is due to Pollak [123], and it seeks to find Topt ∈
∆(γ) such that SADD(Topt) = infT∈∆(γ) SADD(T ), for every γ > 1, where hereafter

SADD(T ) = sup
06ν<∞

ADDν(T ), and ADDν(T ) = Eν [T − ν|T > ν]. (8.6)

To date, no solution to this problem has been found. Alternatively, three types of asymptotic optimality
are distinguished.

Definition 1.1. A procedure T ∗opt ∈ ∆(γ) is order-1 asymptotically optimal if

lim
γ→∞

SADD(T ∗opt)

infT∈∆(γ) SADD(T )
= 1, i.e., inf

T∈∆(γ)
SADD(T ) = SADD(T ∗opt)[1 + o(1)], as γ →∞,

where hereafter o(1)→ 0, as γ →∞.
A procedure T ∗opt ∈ ∆(γ) is order-2 asymptotically optimal if SADD(T ∗opt) − infT∈∆(γ) SADD(T ) =

O(1), as γ →∞, where hereafter O(1) is bounded, as γ →∞.
A procedure T ∗opt ∈ ∆(γ) is order-3 asymptotically optimal if SADD(T ∗opt) − infT∈∆(γ) SADD(T ) =

o(1), as γ →∞.

We now describe the second optimality criterion we will consider. The criterion is known as “multi-
cyclic disorder detection in a stationary regime”. Let T1, T2, . . . denote sequential independent applications
of the same stopping time T , and let T(j) = T(1) + T(2) + · · · + T(j) be the time of the j-th alarm, j > 1.
Let Iν = min{j > 1: T(j) > ν} so that T(Iν) is the point of detection of the true change, which occurs at
time instant ν after Iν − 1 false alarms have been raised. Consider STADD(T ) = limν→∞ Eν [T(Iν) − ν],
i.e., the limiting value of the ADD that we will refer to as the stationary ADD (STADD). The multi-cyclic
optimality criterion consists in finding Topt ∈ ∆(γ) such that STADD(Topt) = infT∈∆(γ) STADD(T ) for
every γ > 1. For the basic iid version of the changepoint detection problem, Pollak and Tartakovsky [125],
showed the optimum to be the SR procedure.

The rest of the chapter is devoted to providing a summary of our accomplishments made over the course
of this project for the aforestated problem.
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2. Efficient Performance Evaluation for a Class of Detection Procedures

This section is a summary of the work of Moustakides, Polunchenko, and Tartakovsky [113], namely, the
part concerned with the problem of efficient performance evaluation for a class of detection schemes. The
class is all stopping rules whose detection statistic is a Markov process; in particular, the SR rule, the SRP
procedure and the CUSUM chart all belong to this class. We proposed a numerical framework whereby
one can evaluate the performance of virtually any detection procedure and with respect to any performance
index. Additionally, the framework supplies a concise numerical method for computing the quasi-stationary
distribution, thus making the SRP scheme applicable in practice. This framework can be of interest to many
scientists in various disciplines where there is need for an on-line detection of changes (or anomalies) in
observed processes.

Note that though we have confined ourselves to the case of deterministic unknown changepoint ν, there
is also another, Bayesian point of view, which assumes that ν is a random variable with a certain prior
distribution. The methodology of Moustakides, Polunchenko, and Tartakovsky [113] can be (and was)
extended to the Bayesian context as well; see Tartakovsky and Moustakides [168], Tartakovsky, Pollak, and
Polunchenko [175], and Polunchenko and Tartakovsky [129].

Consider a generic detection procedure described by the stopping time T vA = inf{n > 1: V v
n > A},

where A > 0 is the detection threshold, and {V v
n }n>0 is a generic detection statistic generated recursively

as V v
n = ξ(V v

n−1) Λn, n > 1 with V v
0 = v > 0. Here ξ(x) is a known sufficiently smooth function such that

ξ(x) > 0 for any x ∈ [0, A), and v is a fixed parameter, referred to as the starting point, or the head start.
Note that T vA can be turned into the CUSUM chart by setting ξ(x) = max{1, x}, and similarly, the

choice ξ(x) = 1 + x will “do the trick” for any SR-type rule. Hence, one can evaluate any Operating
Characteristic (OC) of any procedure that is a special case of T vA simply by choosing the right ξ(x).

Let A > 0 and v ∈ [0, A) be fixed, and define φd(v) = Ed[T vA] and PΛ
d (t) = Pd(Λ1 6 t), where

d = {0,∞}; clearly, φ∞(r) = ARL(T vA) and φ0(v) = ADD0(T vA). Let

Kd(x, y) =
∂

∂y
Pd(V v

n+1 6 y|V v
n = x) =

∂

∂y
PΛ
d

(
y

ξ(x)

)
, d = {0,∞}

denote the transition probability density kernel for the homogeneous Markov process {V v
n }n>1; note that

both Kd(x, y), d = {0,∞} depend on ξ(x).
We now proceed to stating the equations. First, it can be shown that

φd(v) = 1 +

∫ A

0
Kd(v, y)φd(y) dy; (8.7)

cf. Moustakides, Polunchenko, and Tartakovsky [113].
Next, consider ADDν(T vA) = Eν [T vA − ν|T vA > ν] for an arbitrary fixed ν > 1; note that ADD0(T vA) ≡

φ0(v) for all v. To evaluate ADDν(T vA), Moustakides, Polunchenko, and Tartakovsky [113] first argue
that, since at time instance ν > 1 no change is yet in effect and each observation, Xn, 1 6 n 6 ν, is
still f -distributed, it must be that Pν(T vA > ν) = P∞(T vA > ν) for all x. Consequently, ADDν(T vA) =
Eν [(T vA − ν)+] /P∞(T vA > ν), and therefore we are to turn attention to δν(v) = Eν [(T vA − ν)+] and
ρν(v) = P∞(T vA > ν). For either, it is direct to see that

δν(v) =

∫ A

0
K∞(v, y) δν−1(y) dy and ρν(v) =

∫ A

0
K∞(v, y) ρν−1(y) dy,

where ν > 1, δ0(v) = φ0(v) is as in (8.7), and ρ0(v) ≡ 1 for all v, since P∞(T vA > 0) ≡ 1 for all
x; cf. Moustakides, Polunchenko, and Tartakovsky [113]. As soon as δν(v) and ρν(v) are found, by the
above argument ADDν(T vA) can be evaluated as the ratio δν(x)/ρν(x). Furthermore, using ADDν(T vA)’s
computed for sufficiently many successive ν’s beginning from ν = 0 and higher, one can also evaluate
SADD(T vA) = sup06ν<∞ ADDν(T vA), since ADD∞(T vA) = limν→∞ ADDν(T vA) is independent of the
starting point, V v

0 = v.
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Yet another performance measure of much interest is the local (conditional) false alarm probability
P∞(T 6 k + m|T > k), k > 0 inside a fixed “window” of size m > 1 (m = 1 represents the probability
of an instantaneous false alarm). In particular, supk>0 P∞(T 6 k + m|T > k) can serve as an alternative
to the ARL to false alarm. See Tartakovsky [165]. One can readily conclude that P∞(T vA < k + m|T vA >
k) = 1− ρk+m(v)/ρk(v).

We now proceed to STADD(T vA), i.e, to

STADD(T vA) =

( ∞∑
ν=0

Eν [(T vA − ν)+]

) /
E∞[T vA],

and if we let ψ(v) =
∑∞

ν=0 Eν [(T vA − ν)+] =
∑∞

ν=0 δν(x), then STADD(T vA) = ψ(v)/`(v). It can be
shown that

ψ(x) = δ0(x) +

∫ A

0
K∞(x, y)ψ(y) dy; (8.8)

cf. Moustakides, Polunchenko, and Tartakovsky [113]. We also note that ψ(v) cannot be computed prior to
δ0(v) ≡ φ0(v) as the former depends on the latter.

Consider now randomizing the starting point, V v
0 = v, in a fashion analogous that behind the SRP

stopping time. Let QA(x) = limn→∞ P∞(V v
n 6 x|T vA > n) be the cdf of the corresponding quasi-

stationary distribution; note that this distribution exists, as guaranteed by Harris [66, Theorem III.10.1].
Let TQA = inf{n > 1: V Q

n > A}, where A > 0 and V Q
n = ξ(V Q

n−1) Λn, n > 1 with V Q
0 ∝ QA,

and ξ(x) and QA(x) are as defined above; note that TQA can be turned into the SRP procedure by setting
ξ(x) = 1 + x.

For TQA , any OC is dependent upon the quasi-stationary distribution. We therefore first state the equation
that determines qA(x) = dQA(x)/dx, the quasi-stationary pdf; the equation can be seen to be

λA qA(y) =

∫ A

0
qA(x)K∞(x, y) dx, subject to

∫ A

0
qA(x) dx = 1; (8.9)

cf. Moustakides, Polunchenko, and Tartakovsky [113] and Pollak [123]. We note that qA(x) and λA are
both unique. Once qA(x) and λA are found, one can compute φ̄∞ = ARL(TQA ), and δ̄ = ADD0(TQA ) =

ADDν(TQA ), ν > 1, i.e., for TQA , the detection delay is independent from the changepoint. We have

φ̄∞ = 1/(1− λA) and δ̄ =

∫ A

0
δ0(x) qA(x) dx;

cf. Moustakides, Polunchenko, and Tartakovsky [113].
The second equality in the above formula for φ̄∞ is due to the fact that, by design, the P∞-distribution

of the discrete random variable TQA is exactly geometric with parameter 1− λA; note that 0 < λA < 1. Put
otherwise, P∞(TQA > ν) = λνA, where ν > 0; in general, limA→∞ λA = 1. Also, Pollak and Tartakovsky
[127] provide sufficient conditions for λA to be an increasing function of A; in particular, they show that if
the cdf of log Λ1 under measure P∞ is concave, λA is increasing in A.

To conclude, we have now obtained a set of (exact) integral equations and relations governing all com-
monly used performance measures (OC-s) for a broad spectrum of detection procedures; equations (8.7), (8.8),
and (8.9) comprise the cadre of the set. These equations are Fredholm (linear) integral equation of the sec-
ond kind, which are known to rarely permit for an analytical solution. Hence, to deal with the corresponding
integral equations a numerical solver may be in order. One offered by Moustakides, Polunchenko, and
Tartakovsky [113] is a piecewise-constant (zero-order polynomial) collocation method with the interval of
integration [0, A] partitioned into N > 1 equally long subintervals. The collocation nodes are the subin-
tervals’ middle points. As the simplest case of the piecewise collocation method (see, e.g., Atkinson and
Han [9]), the question of accuracy is a well-understood one, and tight error bounds can be easily obtained
from, e.g., Atkinson and Han [9]. Specifically, it can be shown that the uniform L∞ norm of the difference
between the exact solution and the approximate one is O(1/N), provided N is sufficiently large.
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3. The Shiryaev–Roberts–r Procedure

Since its inception in 1985, the SRP procedure has been (not unfoundedly) believed to possibly be exactly
optimal with respect to SADD(T ) in the class ∆(γ). Although many have tried to prove this hypothesis
to be true, none have succeeded. We show this hypothesis to be false. This conclusion is archived by
proposing an extension of the SR rule competitive to the SRP procedure, and performing direct performance
comparison of the twain. The idea of the new procedure is to let the SR detection statistic Rn to start from
a fixed deterministic point R0 = r > 0. We examined the performance of the resulting SR–r scheme
in relation to the starting point, and proposed an initializing value for which the SRP rule is uniformly
worse. This was demonstrated both numerically and analytically, i.e., by virtue of a counterexample. We
also suggest a starting point for which the SR–r scheme exhibits a faster initial response to early changes.
For details see Moustakides, Polunchenko, and Tartakovsky [113], Polunchenko and Tartakovsky [128],
and Tartakovsky and Polunchenko [169].

We first introduce the SR–r procedure. It is defined as the stopping time SrA = inf{n > 1: Rrn > A},
where A > 0 and

Rrn = (1 +Rrn−1) Λn, n > 1 with Rr0 = r > 0. (8.10)

The extra “r” in the name is to emphasize the importance of the starting point (head start). The question
is now: Can one design the head start so as to obtain a procedure, capable of competing with Pollak’s SRP
procedure? The answer is “yes”, which we will explain in the remainder of this section.

First, recall that the direct way to assess the quality of a detection procedure is to compare it against
the exact optimum. However, no exactly SADD(T )-optimal procedure has yet been proposed. Hence, an
alternative approach is in order. As a point of reference one could use a lower bound on the (unknown)
optimum. The following theorem shows that finding such a bound is a much easier task than actually
designing the (exactly) optimal test.

Theorem 3.1. Consider SrA, and letA = Aγ be selected so that ARL(SrAγ ) = γ. Then infT∈∆(γ) SADD(T ) >
SADD(SrA) for every r > 0, where

SADD(SrA) =
rADD0(SrA) +

∑∞
k=0 Ek[(SrA − k)+]

r + ARL(SrA)
. (8.11)

Let us now fix threshold A > 0, and propose the following starting point

rA = arg inf
06r<A

{
SADD(SrA)− SADD(SrA)

}
(8.12)

as a possible candidate for initialization of the SR–r scheme. In other words, we select the value that
brings the two bounds (upper and lower) as close to each other as possible. It can be seen that the resulting
stopping time, SrAA , is a function ofA > 0 only, which is set so that the false alarm constraint is satisfied with
equality. In the next subsection we offer a numerical study of the performance of the SR–r procedure for
various values of r using the numerical framework of Moustakides, Polunchenko, and Tartakovsky [113].

3.1. An Example: Gaussian Scenario

Let {Xn}n>1 be independent unit-variance Gaussian. Specifically, assumeX1, X2, . . . , Xν are eachN (0, 1)
and Xν+1, Xν+2, . . . are each N (θ, 1), where θ 6= 0, a known constant.

Apart from the initialization strategies introduced above, namely the classical SR test (with r = 0),
the SRP test, the SR–rA and the SR–r? procedures, where r? is to the smallest r for which ADDν(SrA)
an increasing function of ν, we will also examine the case of the SR–µ, where r = µ, the mean of the
quasi-stationary distribution.

Let θ = 0.1 (which corresponds to a relatively faint, not easily detectable change), and consider two
cases: γ = 103 and γ = 104, i.e., moderate and low risk of sounding a false alarm. This translates into the
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detection threshold, A, being in the range 103± 1% and 104± 1%, respectively. To solve the corresponding
integral equations and obtain the desired OC-s, we partition the interval [0, A) into N = 104 (for γ = 103)
and N = 105 (for γ = 104) equidistant nodes. This is sufficient to provide the accuracy of 0.5% (confirmed
by Monte Carlo simulations with 106 repetitions).

Before proceeding with the presentation of our computational results, we would like to mention that
in order to evaluate the ARL to false alarm of the SR–r and SRP procedures, it is important to have a
fairly accurate initial guess, i.e., to obtain a pilot estimate of ARL(SrA) to search for appropriate threshold
values in a relatively narrow interval. To this end, the following approximation ARL(SrA) = (A − r)/ζ is
used, where the constant υ ∈ (0, 1) (related to the “overshoot”) is the subject of renewal theory and can be
computed numerically. This approximation can be obtained by noticing that Rrn−n− r is a P∞-martingale
with zero expectation, so that by the optional sampling theorem we have E∞[RrSrA

− SrA − r] = 0. Hence
ARL(SrA) = E∞[RrSrA

] − r, and, since RrSrA is the first excess over A, renewal theory can be applied to
the “overshoot” log(RrSrA

) − logA. This approximation was first derived for r = 0 in Pollak [124], and
its generalization for any r ∈ [0, A) is straightforward. For the SRP procedure the value of r should be
replaced by µ = E∞[RQ0 ], the mean of the quasi-stationary distribution.
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Figure 8.1: ADDν(SrA) for different procedures as a function of the changepoint ν for θ = 0.1.

Shown in Figure 8.1(a) is the family of curves ADDν(SrA) versus ν for all initialization procedures in
question when θ = 0.1 and ARL to false alarm γ = 103. Figure 8.1(b) shows the same for γ = 104.
Table 8.1 reports the numerical values obtained by our computational method for characteristic values of the
change time and for the case of ARL to false alarm equal to 103.

Table 8.1: ADDν(SrA) versus ν for γ = 103 and θ = 0.1.
Procedure \ν 0 50 100 200 400 600 800 1000
SR 298.5 258.3 230.2 197.7 182.9 181.5 181.4 181.4
SR–rA 202.8 195.9 196.4 200.1 202.5 202.8 202.8 202.8
SR–r? 174.9 179.9 191.6 205.6 213.1 214.1 214.2 214.3
SR–µ 194.0 190.7 194.6 201.6 205.6 206.0 206.1 206.1
SRP 206.1

As expected, the SRP procedure is an equalizer. The SR–r? test has the fastest initial response (for
immediate and early changes), but the worst minimax behavior. The SR–rA procedure is uniformly better
than all competing strategies including the SRP test. In the latter comparison, even though the difference
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is not dramatic, it is visible. It is interesting to note that the SR–µ rule has an intermediate performance
between SR–rA and SR–r?, namely sufficiently fast initial response and a minimax performance attained at
the steady state which is the same as the SRP test.

Regarding the conventional SR test (with r = 0) note that it outperforms all its competing schemes,
including SRP for sufficiently large change-time ν = k. This is expected since, as we can see from Fig-
ure 8.2(b), when all tests have the same threshold the SR test has the largest ARL to false alarm and the
same steady state value for the expected detection delay. For the other tests, in order to attain the same as
the SR test ARL to false alarm, the thresholds should be increased. This will result in an increase in the
expected detection delay and in particular the corresponding steady state value. Consequently, the expected
delay of SR, due to its monotone behavior, will attain smaller values than the other tests for sufficiently large
change-time ν = k.

To sum up, the best (in the minimax sense with Pollak’s measure of detection delay) performance is
delivered by the SR–r procedure. By design, performance-wise this rule is very close to the lower bound
SADD(T ) given by (8.11). This suggests that the unknown exactly SADD(T )-optimal procedure can offer
only a practically insignificant improvement over the SR–r rule. Furthermore, the example considered in
the next section indicates that the SR–r procedure may, in fact, be the sought optimum.

3.2. Exact Optimality of the SR–r Procedure

This section constructs an analytical counterexample, which supplies a decisive negative answer to the
question of possible minimax optimality of the SRP procedure.

Theorem 3.2. Let f(x) = e−x1l{x>0} and g(x) = 2e−2x1l{x>0}. Assume the SR–r starts off rA =
√

1 +A−
1, where A solves the transcendental equation

A+ (γ − 1)
√

1 +A log(1 +A)− 2(γ − 1)
√

1 +A = 0.

Then, for every 1 < γ < γ0 = (1 − 0.5 log 3)−1 ≈ 2.2188, ARL(SrAA ) = γ and the SR–r procedure is
minimax, i.e., SADD(SrAA ) = infT∈∆(γ) SADD(T ) for every γ ∈ (1, γ0).

Let the threshold in the SRP procedure be chosen as A∗ = exp{2(γ − 1)/γ} − 1. Then ARL(SQA∗) = γ

and SADD(SQA∗) > SADD(SrAA ) for all 1 < γ < γ0. Therefore, the SRP procedure is suboptimal.

For another analogous result see Tartakovsky and Polunchenko [169].

4. Asymptotic Optimality Properties of the Generalized Shiryaev–Roberts Procedures

This section is a logical continuation of the earlier work on the SR–r procedure. For an extended version
of the material presented in this section see Tartakovsky, Pollak, and Polunchenko [175]. Specifically, our
intent is to gain a theoretical insight into how the SR rule, the SR–r procedure, and the SRP scheme compare
against one another performance-wise. Specifically, we ask and answer the following questions:

1. Is the stationary expected delay of the repeated SR procedure similar to limν→∞ ADDν(SA)? (Yes,
see Theorem 4.2, Theorem 4.3 and Corollary 4.1.)

2. What can be said about the maximal expected detection delays of the SR, SR–r, and SRP procedures?
(The SRP procedure and the SR–r procedure with a specially designed r are third-order asymptoti-
cally minimax, i.e., to within a negligible term o(1)→ 0. See Theorem 4.4. This answer justifies the
conjecture of Moustakides, Polunchenko, and Tartakovsky [113].)

3. What can be said about limν→∞ ADDν(SA), limν→∞ ADDν(SrA), and limν→∞ ADDν(SQA ) when all
have the same ARL to false alarm γ > 1? (The ADD at infinity is the smallest for the original SR
procedure, SA, but the difference between them is negligible as γ →∞. See Theorems 4.5 and 4.4.)

We will focus on SADD(T ) = sup06ν<∞ ADDν(T ) and ADD∞(T ) = limν→∞ ADDν(T ). We recall
that ADDν(T ) = Eν [T − ν|T > ν], ν > 0.

143



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

It follows from Pollak [123] that the SRP procedure (8.3) is order-3 asymptotically optimal whenever
E0[|log Λ1|] <∞. We offer a proof of the order-3 asymptotic optimality property under the stronger second
moment condition E0[|log Λ1|2] <∞ and using different techniques. The second moment condition allows
one to obtain higher-order asymptotic approximations for SADD(SQA ) and infT∈∆(γ) SADD(T ) (up to a
vanishing term).

ν
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Figure 8.2: Typical behavior of ADDν(T ) as a function of
changepoint ν for various initialization strategies.

More importantly, using the ideas of Mous-
takides, Polunchenko, and Tartakovsky [113]
one is able to design the initialization point
r = r(γ) in the SR–r procedure so that it
is also order-3 asymptotically optimal. In
this respect, ADD∞(SrA) plays a critical role.
To understand why, let us look at Figure 8.2
which shows ADDν(SrA) versus ν for several
initialization values r. This figure was ob-
tained using integral equations and numerical
techniques developed by Moustakides, Pol-
unchenko, and Tartakovsky [113]. If r = 0,
this is the classical SR procedure whose aver-
age detection delay is monotonically decreas-
ing to its minimum that is attained at infinity (a
steady state value). It is seen that there exists
a value r = r∗A that depends on the thresh-
oldA for which the worst point ν is at infinity,
i.e., SADD(Sr

∗
A
A ) = ADD∞(Sr

∗
A
A ). The value

of r∗A is the minimal value for which this hap-
pens and it is also the value that delivers the
minimum to the difference between SADD(Sr

∗
A
A ) and the lower bound for infT∈∆(γ) SADD(T ) derived

by Moustakides, Polunchenko, and Tartakovsky [113] and Polunchenko and Tartakovsky [128]. This is a
very important observation, since it allows us to build a proof of asymptotic optimality based on an estimate
of ADD∞(SrA).

The monotonicity of the curve for the ADD of the SR procedure allows us also to conclude (intuitively
only since this is only a numerical observation and there is no theoretical justification of monotonicity) that
the asymptotic lower bound for infT∈∆(γ) SADD(T ) can be evaluated based on the value of ADD∞(SA).

Asymptotically, ADD0(SQA ), ADD∞(Sr
∗
A
A ), and ADD∞(SA) are the same, since the mean of the quasi-

stationary distribution is of order O(logA) and r∗A → r∗ as A→∞, where r∗ is a fixed positive number.

4.1. Two Useful Lemmas

From now on, let R∞ be a random variable whose distribution is given by the cdf

P(R∞ 6 x) = lim
n→∞

P∞(Rrn 6 x) := QST(x),

where QST(x) is the stationary distribution of Rrn. Also, hereafter assume that QA(x) (the quasi-stationary
distribution) and QST(x) both exist; note that this is the case when Λ1 is continuous.

Lemma 4.1. For any r > 0, limn,A→∞ P∞(Rrn 6 x|SrA > n) = QST(x) at all continuity points ofQST(x).

Lemma 4.2. The mean of the quasi-stationary distribution,

µA =

∫ A

0
x dQA(x),

is upper-bounded by O(logA), i.e., µA 6 O(logA), as A → ∞, where O(logA)/ logA is bounded, as
A→∞.
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4.2. Average Run Length to False Alarm

We now present asymptotic approximations for the ARL to false alarm of the SR–r procedure, SrA, and for
that of the SRP procedure, SQA . Hereafter, let Zi = log Λi denote the log-LR for the i-th observation and
define Sn = Z1 + · · · + Zn. Introduce a one-sided stopping time τa = inf{n > 1: Sn > a}, a > 0. Let
κa = Sτa − a be the overshoot (excess over the level a at stopping), and let

ζ = lim
a→∞

E0[e−κa ] and κ = lim
a→∞

E0[κa], (8.13)

be the limiting exponential overshoot and the limiting overshoot, respectively. Either is a constant deter-
mined by the model, and can be computed numerically; in general, 0 < ζ < 1 and κ > 0.

Theorem 4.1. Provided rA = o(A), and assuming A → ∞, it is true that ARL(SrA) = (A/ζ)[1 + o(1)]

uniformly in 0 6 r 6 rA and ARL(SQA ) = (A/ζ)[1 + o(1)].

For practical purposes we recommend to use

ARL(SrA) ≈ A/ζ − r and ARL(SQA ) ≈ A/ζ − µA. (8.14)

4.3. Average Delay to Detection and Asymptotic Optimality

We now proceed to obtaining asymptotic approximations for ADDν(SrA), ν > 0, including ADD∞(SrA). To
judge whether the SR–r procedure with a certain head start, r = rA, is asymptotically order-3 optimal, we
will also derive an asymptotic lower bound for infT∈∆(γ) SADD(T ).

From now on, let V∞ =
∑∞

j=1 e
−Sj and let I = E0[Z1] denote the Kullback-Leibler information

number. Also, let Sjn =
∑n

i=j Zi.

Lemma 4.3. Let E0[|Z1|2] < ∞ and assume that Z1 is non-arithmetic. Let 0 < NA < A be such that
NA/(A

1−δ logA) → ∞ and NA = o(A/ logA) as A → ∞ for some δ ∈ (0, 1). Let r > 0. Then, as
A→∞,

Eν [SrA − ν|SrA > ν,Rrν ] =
1

I

{
logA+ κ − log(1 +Rrν)

− Eν

[
log

(
1 +

V∞
1 +Rrν

) ∣∣∣∣∣SrA > ν,Rrν

]}
+ o(1),

(8.15)

where o(1)→ 0 as A→∞ uniformly on {NA 6 ν <∞, Rrν < A/NA, 0 6 r <∞}.
Let

C∞ = E[log(1 +R∞ + V∞)] =

∫ ∞
0

∫ ∞
0

log(1 + x+ y) dQST(x) dQ̃(y), (8.16)

where Q̃(y) = P0(V∞ 6 y).
The following theorem provides asymptotic approximations for ADD∞(SrA) and for ADD0(SQA ).

Theorem 4.2. If E0[|Z1|2] <∞ and Z1 is non-arithmetic, then for any r > 0 and as A→∞,

ADD∞(SrA) =
1

I
(logA+ κ − C∞) + o(1) and ADD0(SQA ) =

1

I
(logA+ κ − C∞) + o(1).

Let

J (T ) =

∑∞
ν=0 ADDν(T )P∞(T > ν)

ARL(T )
. (8.17)

The following lemma proposes a lower bound for SADD(T ) in the class ∆(γ), γ > 1. This bound will
be used to obtain an asymptotic lower bound in Theorem 4.3 and to prove order-3 asymptotic optimality of
the detection procedures in Theorem 4.4.
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Lemma 4.4. Consider SA, and let A = Aγ be chosen so that ARL(SA) = γ is true. Then the following
lower bound holds:

inf
T∈∆(γ)

SADD(T ) > J (SA). (8.18)

The following theorem provides the asymptotic approximation for the lower bound J (TA).

Theorem 4.3. Let J (T ) be defined as in (8.17), and C∞ be as in (8.16). If E0[|Z1|2] < ∞ and Z1 is
non-arithmetic, then

J (SA) =
1

I
(logA+ κ − C∞) + o(1), as A→∞.

The following corollary is a direct consequence of Theorems 4.2 and 4.3.

Corollary 4.1. If Z1 is non-arithmetic and E0[|Z1|2] < ∞, then ADD∞(SA) = STADD(SA) + o(1), as
A→∞, and

STADD(SA) =
1

I
(logA+ κ − C∞) + o(1), as A→∞.

The following theorem establishes asymptotic optimality of the SRP and SR–r detection procedures
under moderate conditions. Its proof is immediate from the above results.

Theorem 4.4. Let E0[|Z1|2] <∞ and let Z1 be non-arithmetic.
(i) Then

inf
T∈∆(γ)

SADD(T ) >
1

I
[log(γζ) + κ − C∞] + o(1), as γ →∞. (8.19)

(ii) If in the SRP procedure A = Aγ = γζ, then ARL(SQA ) = γ[1 + o(1)] and

SADD(SQA ) =
1

I
[log(γζ) + κ − C∞] + o(1), as γ →∞. (8.20)

Therefore, the SRP procedure is asymptotically order-3 optimal in the class ∆(γ).
(iii) If in the SR–r procedure A = Aγ = γζ, and the initialization point r = o(γ) is selected so that

SADD(SrA) = ADD∞(SrA), then ARL(SrA) = γ[1 + o(1)] and

SADD(SrA) =
1

I
[log(γζ) + κ − C∞] + o(1), as γ →∞. (8.21)

Therefore, the SR–r procedure is asymptotically order-3 optimal.

Feasibility of selecting rγ so that SADD(SrA) = ADD∞(SrA) follows from numerical experiments per-
formed by Moustakides, Polunchenko, and Tartakovsky [113] as well as from the example below.

Remark 4.1. The argument similar to the proof of Theorem 4.2 can be used in order to show that for the
SR procedure

SADD(SA) = ADD0(SA) =
1

I
(logA+ κ − C0) + o(1), as A→∞,

where C0 = E0[log(1 + V∞)]. Since A = ζγ implies ARL(SA) = γ[1 + o(1)], it follows that with this
choice of threshold

SADD(SA) = ADD0(SA) =
1

I
[log(ζγ) + κ − C0] + o(1), as γ →∞. (8.22)

Comparing (8.22) with the lower bound (8.19) shows that SADD(SA)− infT∈∆(γ) SADD(T ) = O(1),
as γ → ∞. Thus, the SR procedure is only second-order asymptotically optimal and the difference is
approximately equal to (C∞−C0)/I . This difference can be quite large when detecting small changes (i.e.,
when I is small).
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An interesting question is how ADD∞(SA), ADD∞(SrA), and ADD∞(SQA ) are related when all three
procedures have the same ARL to false alarm γ? The answer is that ADD∞(SA) is the smallest, as estab-
lished by Theorem 4.5 below. Note also that by Theorems 4.2 and 4.4 the difference between ADD∞(SA),
ADD∞(SrA) and ADD∞(SQA ) vanishes as γ →∞.

This result can be proved thus: 1) To show that ARL(SQA ) is increasing inA (the fact that the ARL to false
alarm of the SR−r procedure is increasing in A for a fixed r is obvious); and 2) To show that ADD∞(SQA )
is increasing in A (obviously, the ADD’s at infinity are the same for all three procedures, assuming the same
threshold for all three). Since the SR rule, SA, requires the lowest threshold to attain the same ARL to false
alarm, ADD∞(SA) is the lowest. Step 1 can be performed for the most general model, i.e., we can prove
that ARL(SQA ) is increasing in A in the general case. However, while we believe that ADD∞(SQA ) is also
increasing in A in the general case, we are able to prove this fact only for the exponential family with a
certain log-concavity property, which guarantees monotonicity properties of the Markov detection statistics.

For η > 0, regard the sequence defined by the recursion

R
(η)
n+1 =

(
η +R(η)

n

)
Λn+1, n > 0, R

(η)
0 = r. (8.23)

To prove the required result we need the following lemma.

Lemma 4.5. Let fθ(x) = exp{θx− ψ(θ)} be a density (with respect to some sigma-finite measure) where
without loss of generality ψ(0) = ψ′(0) = 0, and suppose that the corresponding distribution function
Fθ=0(x) is log-concave (i.e., logF0(x) is a concave function). Suppose that g(x) = fθ(x) for some θ > 0
and that f(x) = fθ=0(x), so that Λi = eθXi−ψ(θ). Then the process (Mn)n>0 that has transition probabili-
ties

P(Mn+1 6 x|Mn = t) = P∞
(
R

(η)
n+1 6 x|R(η)

n = t, R
(η)
n+1 < A

)
is a stochastically monotone Markov process, i.e., P(Mn+1 > x|Mn = t) is non-decreasing and right-
continuous in t for all x.

Remark 4.2. Note that the Gaussian distribution is log-concave. Note also that the main issue is log-
concavity, but not that g, f belong to an exponential family, since “most” pairs g, f can be embedded into
an exponential family via

fθ(x) =
(f(x))1−θ(g(x))θ∫
(f(t))1−θ(g(t))θ dt

def
= eθΛ(x)−ψ(θ)f(x),

and that without loss of generality one can assume that the observations themselves have been transformed
into Λi (the likelihood ratios ofXi and of Λi are the same, and by translation one can obtain ψ(0) = ψ′(0) =
0).

We can now proceed to stating the desired result.

Theorem 4.5. Assume the exponential family and log-concavity conditions of Lemma 4.5. Let 0 < γ <∞
be fixed, and letArγ be such that the ARL to false alarm of the SR–r procedure T rArγ = inf{n > 1: Rrn > Arγ}
is γ. Then ADD∞(T rArγ ) is an increasing function of r and

min
06r<Arγ

ADD∞(SrArγ ) = ADD∞(S0
A0
γ
) < ADD∞(SQAQ),

where AQ is such that ARL(SQAQ) = γ.
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4.4. Computing Constants C0 and C∞
In order to implement the asymptotic approximations we have to be able to compute the constants C0 and
C∞. To compute C0 and C∞ we need to find qST(x) = dQST(x)/dx and q0(x) = dQ0(x)/dx. These pdf-s
can be found from the equations

qST(x) =

∫ ∞
0

qST(y)

[
∂

∂x
PΛ
∞

(
x

1 + y

)]
dy; q0(x) = −

∫ ∞
0

q0(y)

[
∂

∂x
PΛ

0

(
1 + y

x

)]
dy,

where PΛ
d (t) = P∞(Λ1 6 t), d = {0,∞}. Both C0 and C∞ can then be found, e.g., numerically. The next

subsection offers a comparative performance analysis for an example where C0 and C∞ are computable
analytically.

4.5. Accuracy of Asymptotic Approximations: An Example

To test the accuracy of the proposed asymptotic approximations, we carried out an extensive performance
evaluation of the procedures discussed in the earlier sections for the following example. Suppose {Xn}n>1

is a series of independent observations such that X1, X2, . . . , Xν are beta(2, 1) each, and Xν+1, Xν+2, . . .
are beta(1, 2) each. Put another way, the series undergoes a sudden and abrupt shift in the expected value
from 2/3 pre-change to 1/3 post-change, while retaining the variance. The pre- and post-change probability
densities for this scenario are f(x) = 2x1l{06x61} and g(x) = 2(1− x)1l{06x61}

To be specific, our goal is to verify the conditions and the accuracy of the asymptotic approximations
stated in Theorem 4.4, i.e.,

SADD(SrA) ≈ SADD(SQA ) ≈ 1

I
(logA+ κ − C∞) and SADD(SA) ≈ 1

I
(logA+ κ − C0), (8.24)

and also the approximations (8.14).
To undertake this task, it is necessary to know C0, C∞, ζ, κ, rA and µA. It is rare that C0 and C∞

can be found analytically, yet the beta(2, 1)-to-beta(1, 2) model at hand they can: C0 = 1 and C∞ =
π2/6 ≈ 1.6449. Also, note that I = 1. Thus, SADD(SrA) ≈ SADD(SQA ) ≈ logA + κ − 1.6449 and
SADD(SA) ≈ logA+ κ − 1.

Unfortunately, neither κ nor ζ are computable exactly. Monte Carlo simulations with 106 trials have
been performed to estimate the two as κ ≈ 1.255 and ζ ≈ 0.426 with the standard error less than 10−3.
Specifically, these estimates were obtained from the formulas

κ =
E0[S2

1 ]

2E0[S1]
−
∞∑
k=1

1

k
E0[S−k ] and ζ =

1

I
exp

{
−2

∞∑
k=1

1

k

(
P0(Sk 6 0) + P∞(Sk > 0)

)}
,

where x− = min(0, x); see, e.g., Woodroofe [185].
Though we can find C0 and C∞, neither the quasi-stationary distribution, required for the SRP proce-

dure, nor ADDν(T ) for ν > 0 and the ARL to false alarm seem feasible to get analytically. To overcome this
difficulty, these quantities were computed numerically, using the approach of Moustakides, Polunchenko,
and Tartakovsky [113] with the number of breakpoints set at 3 × 104, high enough to ensure the relative
error in the order of a fraction of a percent.

At this point the only unresolved question is that of how to choose r. Several options have been pro-
posed in Moustakides, Polunchenko, and Tartakovsky [113], one of which is to set r = µA. Recall that
Theorem 4.4 requires (a) r = o(A) as A → ∞ and (b) SADD(SrA) = ADD∞(SrA). With this choice, the
condition (a) is satisfied since according to Lemma 4.2 µA 6 O(logA).

Condition (b) is also satisfied even for small values of the ARL to false alarm. This can be seen from
Figure 8.3, which shows how ADDν(T ) evolves as ν runs from 0 to 20 for the SRP test and for the SR-r
procedure with r = µA. The ARL to false alarm is about 50 for both procedures. Observe that the SR–r
rule attains supremum at ν → ∞. Also, the stationary regime kicks in as early as at ν = 6, and this is for
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Figure 8.3: Results of numerical evaluation of the conditional average detection delay vs. changepoint ν of
the SR, SRP and SR–r (r = µA) procedures for the beta(2, 1)-to-beta(1, 2) model.
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Figure 8.4: Results of numerical evaluation of operating characteristics of the SR, SRP and SR–r (r = µA)
procedures for the beta(2, 1)-to-beta(1, 2) model.

149



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

ARL(T ) ≈ 50. Figure 8.3 provides an illustration of Theorem 4.5 – ADD∞(T ) is indeed the smallest for
the SR procedure, while the difference is not substantial.

Shown in Figure 8.4 are the operating characteristics of the procedures of interest expressed via SADD(T )
versus ARL(T ), and the lower bound J (SA) – all plotted against log[ARL(T )]. The range of values of
ARL(T ) is from very low (as in under 10) to as high as 104. The log scale is particularly convenient in this
case because the Kullback-Leibler information number is 1, and from the asymptotic expansions it follows
that SADD(T ) with respect to log[ARL(T )] should be straight diagonal lines with unit slope. Such an ex-
pected form of dependence is indeed confirmed for ARL(T ) above roughly 100, i.e., the point at which the
asymptotics kick in. When ARL(T ) < 100, a slight deviation from the liner curve is observed. It is also
seen that the performance of the SRP rule and that of the SR-r procedure with r = µA hardly exhibit any
difference.

To better illustrate the performance difference, Table 4.5 provides a summary of selected values SADD(T )
and J (SA). Also presented in parentheses are the corresponding theoretical predictions made based on the
asymptotic approximations (8.24) and (9.4).

Table 8.2: Operating characteristics of the SR, SRP and SR–r procedures for the beta(2, 1)-to-beta(1, 2)
model. Numbers in parentheses are the corresponding theoretical values computed using the asymptotic
approximations.

Test γ 50 100 500 1000 10000

SR

A 21.0 42.0 212.0 424.5 4256.0

ARL(T ) 50.412 (49.342) 99.832 (98.684) 499.866 (498.12) 999.797 (997.415) 9999.675 (10000.0)

SADD(T ) 3.407 (3.312) 4.051 (4.005) 5.622 (5.615) 6.309 (6.308) 8.607 (8.611)

SRP

A 21.5 43.0 213.5 426.5 4259.0

ARL(T ) 49.635 (48.48) 99.664 (98.431) 499.424 (497.595) 999.87 (997.404) 9999.81 (10000.066)

SADD(T ) 2.942 (2.668) 3.534 (3.361) 5.021 (4.97) 5.692 (5.663) 7.965 (7.966)

SR-r

A 21.5 43.0 213.5 426.5 4259.0

r = µA 2.037 2.603 4.052 4.711 6.982

ARL(T ) 49.554 (48.48) 99.582 (98.431) 500.52 (497.595) 999.792 (997.404) 9999.735 (10000.066)

SADD(T ) 2.942 (2.668) 3.534 (3.361) 5.023 (4.97) 5.692 (5.663) 7.965 (7.966)

Lower Bound 2.939 (2.668) 3.523 (3.361) 5.017 (4.97) 5.688 (5.663) 7.965 (7.966)
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Chapter 9

Theoretical Results in Distributed Quickest
Changepoint Detection

The work presented in this chapter is the result of collaboration of Dr. Tartakovsky (USC) and Dr. Veeravalli
(Illinois).

1. The General Problem and Preliminaries

While the quickest changepoint detection problem has been studied for over fifty years, there has been
little prior work on theoretical extensions to the distributed sensor setting and general stochastic models
for observations. We developed novel procedures for change detection and isolation, to investigate their
properties for general multipopulation and distributed stochastic models, as well as to provide an analytical
framework to predict their performance in terms of the tradeoff between detection delay and frequency of
false alarms.

S1 Si SN· · · · · ·

Fusion Center
Statistics

Change Point Decision

U1(n) Ui(n) UN (n)

{X1(n)} {Xi(n)} {XN (n)}

Change Evolution

λ1
λi λi+1

Disruption

Change

Figure 9.1: Change process detection in sensor net-
work.

To address this goal, we have performed anal-
ysis of several generalizations of the change detec-
tion problem that arise in the applications to dis-
tributed sensor systems. Specifically, we consider
the distributed multisensor system with N sensors,
S1, . . . , SN , communicating with a fusion center,
as shown in Figure 9.1. At time n, an observa-
tion Xi(n) is made at sensor Si. The changes in
the statistical properties of the sequences {Xi(n)}
are governed by an event. We investigate a variety
of models for the change process: only one (or a
subset) of the sensors changes, they all change at
the same time, or they change at different times.
We also include various scenarios for communica-
tion with the fusion center, from the centralized one
where the sensors send sufficient statistics, to the
decentralized one where they send quantized ob-
servations or local decisions. We study the role of

feedback from the fusion center, and investigate schemes for conserving energy at the sensors such as switch-
ing the sensors between on/off modes and censoring their observations. This concert of possibilities leads
to a very interesting set of open problems that are discussed in the following sections. In order to address
the wide range of potential applications of our theory, we accommodate general statistical models for the
observations and allow for different degrees of model uncertainty.
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2. A Distributed Scenario with no Feedback and Local or Full Memory

In the rest of this section, we will be interested in a particular distributed and decentralized multisensor
scenario where the statistical properties of the sensors’ observations change at the same unknown point in
time λ, and no communication between sensors and no feedback between the fusion center and sensors
are allowed, as shown in Figure 9.2. The goal is to detect this change as soon as possible, subject to false
alarm constraints. Therefore, there is a distributed N -sensor system in which at time n one observes an N -
component vector stochastic process (X1(n), . . . , XN (n)). The i-th component Xi(n), n = 1, 2, . . . corre-
sponds to observations obtained from the sensor Si. We will consider two approaches to the decentralized
fusion problem. In the first case, the sensors quantize their observations and these quantized observations
are sent to the fusion center. In this scenario there is only local memory, since quantization is performed
based on current observations (i.e., no past observations participate in quantization). On the contrary, in
the second scenario the sensors make local decisions based on all past observations (full memory). These
decisions are then sent to the fusion center for making a final decision.

Figure 9.2: Change detection using distributed sen-
sors.

At an unknown point in time ν (ν = 1, 2 . . . )
something happens and all of the components
change their distribution. Conditioned on the
change point, the observation sequences {X1(n)},
{X2(n)}, . . . , {XN (n)} are assumed to be mutu-
ally independent. Moreover, we assume that, in a
particular sensor, the observations are iid before and
after the change (with different distributions). If the
change occurs at ν = k, then in sensor Si the data
Xi(1), . . . , Xi(ν) follow density fi(x), while the
data Xi(ν + 1), Xi(ν + 2), . . . have the common
distribution with density gi(x).

From now on, let

Zi(n) = log
gi(Xi(n))

fi(Xi(n))
(9.1)

be the log-LR (LLR) between the “change” and
“no-change” hypotheses for the n-th observation
from the i-th sensor, and let Ii = E1[Zi(1)] be the

Kullback-Leibler (K-L) information number between the densities gi(x) and fi(x).
The asymptotic performance of an optimal centralized detection procedure that has access to all data

b̄X
n is given by

inf
T∈∆(γ)

SADD(T ) =
log γ

Itot
[1 + o(1)], γ →∞, (9.2)

where Itot =
∑N

i=1 Ii. See, e.g., Basseville and Nikiforov [16], Siegmund [154], Tartakovsky [162]. This
performance is attained for the centralized CUSUM and SR tests that use all available data.

3. Centralized CUSUM and Shiryaev–Roberts Detection Procedures for Known Parameter
Values and Their Asymptotic Minimaxity Properties

Under the notation introduced above, the centralized CUSUM (detection) statistic is defined recursively as

W c(n) = max

{
0,W c(n− 1) +

N∑
i=1

Zi(n)

}
for n > 1, W c(0) = 0, (9.3)

and the centralized CUSUM (C-CUSUM) test is identified with the stopping time T cCS(h) = inf{n >
1: W c(n) > h}, where h > 0 is a detection threshold which controls the FAR.
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It follows from Basseville and Nikiforov [16], Lorden [95], Siegmund [154], Tartakovsky [162] that
ARL(T cCS(h)) > eh and, hence, h = log γ guarantees ARL(T cCS(h)) > γ. Even though this choice of the
threshold is usually conservative, it is useful as a preliminary estimate. Substantial improvements can be
obtained using corrected Brownian motion approximations Siegmund [154] and the renewal argument Tar-
takovsky [165]. In particular, it follows from Tartakovsky [165] that, as h→∞,

ARL(T cCS(h)) =
eh

Ictotζ
2
[1 + o(1)], (9.4)

where Ictot =
∑N

l=1 I
c
l and ζ is a constant (depending on the model) subject to the renewal theory. Although

this approximation is not especially accurate for high FAR, it is satisfactory already for moderate FAR;
cf. Pollak and Tartakovsky [126].

If the threshold is selected using (9.4), i.e., hγ = log(γIctotζ
2), then ARL(T cCS(h)) ∼ γ and, as γ →∞,

inf
T∈γ

SADD(T ) >
log γ

Ictot
[1 + o(1)],

SADD(T cCS(hγ)) = E1(T cCS(hγ)− 1) =
hγ
Ictot

+O(1),

(9.5)

which means that the C-CUSUM test is asymptotically globally minimax-optimal in the distributed setting.
The centralized SR test (C-SR) is given by the stopping time

T cSR(A) = min {n > 1: Rc(n) > A} , (9.6)

where the SR detection statistic obeys the recursion

Rc(0) = 0, Rc(n) = (1 +Rc(n− 1)) exp

{
N∑
i=1

Zi(n)

}
for n > 1. (9.7)

IfA = γζ, then ARL(T cSR(A)) ≈ γ and, as γ →∞, the relations (9.5) hold true for the C-SR procedure,
which means that this test is also asymptotically optimal in the minimax sense.

4. Analytical Techniques for Non-iid Cases

Much of the analysis of change point detection procedures has been restricted to the iid case. The optimality
properties of the CUSUM and SR procedures depend crucially on the iid assumption. However recent work,
including research by the PIs, has shown that more general models for the distributions can be handled in
the asymptotic setting where γ →∞ Lai [83], Tartakovsky [163], Tartakovsky and Veeravalli [172].

In particular, it can be shown that the CUSUM and SR procedures are (first order) asymptotically opti-
mal. Furthermore, these asymptotic optimality results extend to arbitrary moments of the delay Tartakovsky
[163], Tartakovsky and Veeravalli [172].

Let

`kn+k−1 =
n+k−1∑
j=k

N∑
i=1

log

(
gi(Xi(j)|Xi(1), . . . , Xi(j − 1))

fi(Xi(j)|Xi(1), . . . , Xi(j − 1))

)
,

where in a general non-iid case the densities gi(Xi) and fi(Xi) are replaced with the corresponding condi-
tional densities.

The asymptotic performance results of (9.5) in the i.i.d. case rely on the almost sure convergence of
the normalized LLRs n−1

∑N
i=1

∑n+k−1
j=k Zi(j) to the K-L information number Ictot as n → ∞. This latter

convergence is guaranteed by the Strong Law of Large Numbers as long as Ictot is finite. To generalize these
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results to the non-iid case, we need to assume the convergence of LLRs `kn+k−1 with some positive and finite
number q:

`kn+k−1

n

Pk−a.s.−−−−→
n→∞

q for every k <∞. (9.8)

Furthermore, we need the following condition on the rate of convergence:

∞∑
n=1

Pk
{
| `kn+k−1−nq| > nε

}
<∞ for every ε > 0. (9.9)

The convergence implied by (9.8) and (9.9) is also called complete convergence, and can be written com-
pactly as

`kn+k−1

n

Pk−completely−−−−−−−−→
n→∞

q for every k <∞. (9.10)

Note that the quantity q plays the role of the total K-L distance between the “change” and “no change”
hypotheses in the non-iid case. In particular, (9.5) can be extended to the non-iid case with Ictot replaced
with q.

It can be shown that the complete convergence assumption is not restrictive and usually holds in practice,
especially under Markov and hidden Markov models. Complete convergence allows us to extend most of the
first order asymptotic approximations to non-iid cases, and is being used as a powerful tool in this project to
obtain results for realistic models that arise in the applications to distributed sensor systems.

5. Multichart Centralized CUSUM and SR Procedures for Unknown Parameter Values

Consider a parametric model with pre-change and post-change densities fµll (x) and gθll (x), respectively.
In many applications the pre-change parameter values µl can be estimated quite accurately in advance and,
therefore, can be assumed to be known. However, the post-change parameters are seldom known in advance,
and the putative θl is merely a representation of a meaningful change.

If the true post-change parameter value is not equal to the putative value θl, then the C-CUSUM and
C-SR detection procedures that are tuned to θl are not optimal anymore. For the sake of simplicity consider
a symmetric case where θl = θ for all l = 1, . . . , N . In asymmetric case, the argument is essentially the
same but the notation becomes cumbersome. Write

Wn(θ) = max
16k6n

n∑
j=k

N∑
l=1

log
gθl (Xl(j))

fµll (Xl(j))
, Rn(θ) =

n∑
k=1

n∑
j=k

N∑
l=1

gθl (Xl(j))

fµll (Xl(j))

for the CUSUM and SR statistics tuned to the value θ. There are several approaches for composite post-
change hypotheses: (a) A generalized LR approach based on the generalized CUSUM statistic supθWn(θ)
Dragalin [48], Lorden [95]; (b) A mixture-based CUSUM (or SR) statistic

∫
Wn(θ) dΠ(θ) averaged over a

prior distribution Π(θ) Pollak [124]; and (c) Adaptive CUSUM and SR procedures where the parameter θ is
replaced with one-stage delayed estimators Dragalin [47], Lorden and Pollak [96], Tartakovsky [163].

All the above methods have pros and cons. The generalized likelihood ratio approach is second-order
optimal Dragalin [48] but computationally not feasible. The mixture-based approach is also second-order
optimal Pollak [124], but may be difficult to implement since it is not always possible to find a conjugate
prior to avoid computational problems. The approach of Lorden and Pollak [96] gives almost optimal per-
formance, but also computationally demanding. The adaptive approaches of Dragalin [47] and Tartakovsky
[163] are very simple in implementation (recursive) but are not second-order optimal – the performance
degrades dramatically for detecting small changes.

For this reason, we propose to attack this problem from a different standpoint – using a multichart cen-
tralized detection test which will be referred to as M-C-CUSUM. Namely, in most applications it is usually
possible to define an interval [θ, θ] for the post-change parameter (either using some prior information or
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designing two values θ and θ). For example, the point θ can be selected in such a way that the average detec-
tion delay for the values θ > θ is small, so that further optimization is unnecessary. The value of θ, in turn,
can be selected so that for smaller values it would be rather difficult to detect the change with a reasonable
detection delay (indifference zone). Once the interval is set, M > 2 “reference” points are selected from
that interval to run M C-CUSUM tests in parallel, each tuned to the respective point.

To be specific, let θm ∈ [θ, θ], m = 1, . . . ,M be a set of reference points, such that θm < θm+1. The
M-C-CUSUM statistic is then defined as follows. Let `l,m(n) = log[gθml (Xl(n))/fµll (Xl(n))] be the LLR
tuned to θm. First, we define the C-CUSUM statistics for each of the reference points

W c
m(n) = max

{
0,W c

m(n) +
N∑
l=1

`l,m(n)

}
, W c

m(0) = 0

and the corresponding stopping times for each of the latter statistics τ cm(hm) = min {n > 1: W c
m(n) > hm}.

The M-C-CUSUM stopping time is τMC(h) = min16m6M τ cm(hm), where h = (h1, . . . , hM ), hm > 0.
Clearly, the solution is not unique, since in general there are M different threshold values and only one

constraint ARL(τMC(h)) = γ. Therefore, additional constraints are needed. We will use two approaches.
In the first one, we use a common threshold by setting hm = h for all m = 1, . . . ,M . Obviously, in this
case the values of ARL(τ cm(h)) are different for different m. In the second one, we balance the values of
ARL(τ cm(hm)), in which case the thresholds are found from the equations

ARL(τ cm(hm)) = Mγ, m = 1, . . . ,M. (9.11)

In fact, it is possible to show that hm can be selected so that equations (9.11) hold for sufficiently large γ, and
this approximation is asymptotically accurate as γ → ∞. In this balanced case, the following approximate
equality for ARL(τMC(h)) holds

ARL(τMC(h)) ≈
(

M∑
m=1

e−hmImζ
2
m

)−1

,

where Im =
∑N

l=1 E
θm
1 `l,m(1) is the corresponding K-L divergence and 0 < ζm < 1 is a computable

constant related to the limiting “exponential overshoot” in the one-sided test, which is subject of a renewal-
theoretic argument.

The following theorem establishes asymptotic performance of the M-C-CUSUM detection procedure in
these two scenarios. We will need the following additional notation: Jm(θ) =

∑N
l=1 E

θ
1 `l,m(1), SADDθ(τC(h)) =

supk Eθk[τ − k|τ > k], where Eθk is expectation when the post-change parameter value is θ.

Theorem 5.1. Assume that Jm(θ) is monotonically nondecreasing in θ for θ > θm and Jm(θ) <∞ for all
θ.

(i) For every hm > 0,

ARL(τMC(h)) >
1∑M

m=1 e
−hm

.

If, in addition, the LLR is non-arithmetic, then, as minm hm →∞,

ARL(τMC(h)) =
1 + o(1)∑M

m=1[e−hmImζ2
m]
.

(ii) Let hm = hm(ν) be such that limν→∞(hm/ν) = 1, m = 1, . . . ,M and let θ∗ ∈ (−∞, θ) be such
that J1(θ∗) = 0. Then for any θ > θ∗ as ν →∞,

SADDθ(τMC(h)) =
ν

max
16m6M

Jm(θ)
(1 + o(1)), (9.12)
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where Jm(θ) = Im for θ = θm .
(iii) Let h1 = · · · = hM = h. If h = hγ = log(γ

∑M
m=1 Imv

2
m), then, as γ →∞,

ARL(τMC(hγ) = γ[1 + o(1)],

and, for all m = 1, . . . ,M ,

inf
τ∈Cγ

SADDθm(τ) ∼ SADDθm(τMC(hγ)) ∼
log γ

Im
. (9.13)

(iv) If hm = hm(γ) = log(γMImζ
2
m), then, as γ →∞,

ARL(τ cm(hm(γ))) = Mγ[1 + o(1)], m = 1, . . . ,M ;

ARL(τMC(h(γ))) = γ[1 + o(1)],

and, for all m = 1, . . . ,M , asymptotic relations (9.13) hold.

Note that Theorem 5.1 (iii) and (iv) imply that the M-C-CUSUM is asymptotically first-order optimal
at the points θ1, . . . , θM in both considered scenarios. Conditions of the theorem hold for the exponential
family of distributions.

Note also that similar results hold for the M-C-SR detection procedure (where the CUSUM statistics
W c
m(n) are replaced with the SR statistics Rcm(n)), i.e., it is also asymptotically minimax at the points

θ1, . . . , θM .
In Section 7, we consider a decentralized detection procedure that uses compressed data (U1(n), . . . ,

UN (n)) by quantizing the data at sensors, so that the required bandwidth for communication with the fusion
center is minimal. In this context, the use of the multichart detection procedures is especially important,
since it allows us to perform quantization in a (small) number of isolated points. It is interesting to investigate
how the loss in information (caused by quantization) affects the efficiency of detection procedures. This
problem will be addressed below in detail. The advantage of these tests is that they do not require any
processing power at the sensors.

6. Decentralized Detection Based on Local Decisions at Sensors for Known Models

We now consider three decentralized detection schemes with full memory that perform local detection in
the sensors and then transmit these local binary decisions to the fusion center for optimal combining and
final decision-making. Obviously, these schemes require minimum bandwidth for communication with the
fusion center. The abbreviation LD-CUSUM will be used for procedures that perform CUSUM tests in
sensors and use local decisions.

6.1. Asymptotically Optimal Decentralized LD-CUSUM Test

Let
Wi(n) = max {0,Wi(n− 1) + Zi(n)} , Wi(0) = 0

be the CUSUM statistic in the i-th sensor, where Zi(n) = log[f
(i)
1 (Xi(n))/f

(i)
0 (Xi(n))] is the LLR, and let

Ui(n) =

{
1 if Wi(n) > ωih

0 otherwise,

where ωi = Ii/Itot = Ii/
∑N

i=1 Ii (Ii = E0[Zi(1)]) and h is a positive threshold.
The stopping time is defined as

Tld(h) = min{n > 1: min
16i6N

[Wi(n)/ωi] > h}. (9.14)
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In other words, binary local decisions (1 or 0) are transmitted to the fusion center, and the change is declared
at the first time when Ui(n) = 1 for all sensors i = 1, . . . , N .

It follows from Mei [104] that if E0[|Zi(1)|3] <∞, then ARL(Tld(h)) > eh for every h > 0. Under an
additional Cramér-type condition, it follows from Dragalin, Tartakovsky, and Veeravalli [49] that

SADD(Tld(h)) =
h

Itot
+ CN

√
h

Itot
+ c+ o(1) as h→∞, (9.15)

where c is a computable constant that depends on the model and

CN = E max
16i6N

{
σ̂i
Ii
Yi

}
, (9.16)

Y1, . . . , YN are independent standard Gaussian random variables; σ̂i =
√

Vari(Z1(i)); Vari is the operator
of variance under f (i)

1 .
Therefore, if h = log γ, then

inf
τ∈Cγ

SADD(τ) ∼ SADD(Tld(h)) ∼ log γ

Itot
, as γ →∞, (9.17)

and the detection test Tld(h) is globally first-order asymptotically optimal (AO). Correspondingly, we will
use the abbreviation AO-LD-CUSUM for this test in the rest of the report.

However, since the second term in the asymptotic approximation (9.15) is on the order of the square
root of the threshold, it is expected that the convergence to the optimum is slow. Furthermore, the perfor-
mance degradation compared to the optimal centralized test is expected to be more and more severe with
growth of the number of sensors, since the constant CN given by (9.16) increases with N . Note that for
the optimal centralized CUSUM and SR tests and for the decentralized CUSUM and SR tests with binary
quantization introduced below in Subsection 7 residual terms are constants. We therefore expect that for
moderate false alarm rates typical for practical applications the procedures with quantization may perform
better. In Subsection 9.1, this conjecture is verified for the Poisson model.

It is worth mentioning that the results similar to (9.15) and (9.17) are not available for LD-SR detection
test (where local voting is done based on the SR statistics Ri(n) in place of the CUSUM statistics Wi(n)) in
the class Cγ . It turns out that the renewal property of the CUSUM statisticsWi(n) plays a crucial role under
the ARL to false alarm constraint (as well as under the local PFA constraint). However, it follows from the
work of Tartakovsky and Veeravalli [173] that the LD-SR detection test can be effectively constructed in a
Bayesian setting.

6.2. Decentralized Minimal and Maximal LD-CUSUM and LD-SR Tests

Let T iCS(h) = min{n : Wi(n) > h} denote the (local) stopping time of the CUSUM test in the i-th sensor.
Introduce the stopping times

Tmin(h) = min(T 1
CS, . . . , T

N
CS) and Tmax(h) = max(T 1

CS, . . . , T
N
CS)

that will be referred to as minimal LD-CUSUM (Min-LD-CUSUM) and maximal LD-CUSUM (Max-LD-
CUSUM) tests, respectively. Similarly, we may define Min-LD-SR and Max-LD-SR tests based on the local
SR stopping times in sensors T iSR(h) = min{n : logRi(n) > h}. Below we focus on the CUSUM-based
tests keeping in mind that the results hold for the SR-based tests as well.

Consider first the false alarm rate for these detection tests. Clearly, ARL(Tmax) > ARL(T iCS) for every
i = 1, . . . , N . Since ARL(T iCS) > eh, it follows that ARL(Tmax) > eh for every h > 0. We now show that
ARL(Tmin) > N−1eh for every h > 0. Indeed,

Tmin = min{n : max
i
Wi(n) > h} > min{n : max

i
Ri(n) > eh} > min{n : GN (n) > eh/N} = η,
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where GN (n) = N−1
∑N

i=1Ri(n). Since GN (n) − n is a zero-mean P∞-martingale and since GN (η) >
eh/N , it follows from the optional sampling theorem that ARL(Tmin) > ARL(η) = GN (η) > eh/N .

However, these inequalities are usually very conservative. For large threshold values, asymptotically
sharp approximations can be derived as follows. It follows from Pollak and Tartakovsky [126], Tartakovsky
[165] that, as h → ∞, under the no-change hypothesis, the stopping times T iCS, i = 1, . . . , N are expo-
nentially distributed with mean values eh/(ζ2

i Ii), where ζi are constants that are defined by (9.24) replacing
Sq(ηh) by

∑ηh
k=1 Zi(k). These constants can be computed numerically for any particular model using re-

newal arguments. Therefore, for a large threshold, Tmin(h) is approximately exponentially distributed with
mean ARL(Tmin) ∼ eh/cN , where cN =

∑N
i=1 v

2
i Ii, while the mean of the stopping time Tmax is

ARL(Tmax) ∼ eh/c′N as h→∞,

where c′N < cN can be easily computed for any N . In particular, for N = 5 and in the symmetric case,
c′5 = (60/137)ζ2I ≈ 0.44ζ2I and c5 = 5ζ2I .

In order to derive an asymptotic approximation for SADD(Tmin), note that E1 Tmin(h) 6 E1 T
i
CS(h) for

all i = 1, . . . , N and, hence,

E1 Tmin 6
h

min16i6N Ii
(1 + o(1)), as h→∞,

since E1[T iCS(h)] ∼ h/Ii.
To derive an approximation for SADD(Tmax), introduce the stopping time η(h) = min{n > 1: min16i6N Wi(n) >

h} and note that η(h) > Tmax(h). Since Wi(n) =
∑n

k=1 Zi(k) −min16k6n Zi(k) and the second term is
a slowly changing sequence, applying Theorem 2.3 of Tartakovsky [164] yields

E1 η(h) ∼ h

min16i6N Ii
, as h→∞,

which implies that

E1[Tmax] 6
h

min16i6N Ii
(1 + o(1)), as h→∞.

Therefore, taking thresholds h = log(γcN ) in the Min-LD-CUSUM and h = log(γc′N ) in the Max-LD-
CUSUM, we obtain the bounds for tradeoff curves that relate the SADD and the ARL, as γ →∞:

SADD(Tmin) 6
log γ

max16i6N Ii
(1 + o(1)), SADD(Tmax) 6

log γ

min16i6N Ii
(1 + o(1)).

Thus, in the symmetric case where Ii = I , the asymptotic relative efficiency of these detection tests com-
pared to the optimal centralized test (defined as the ratio of the limiting values of SADDs, see (9.34) below)
is ARE(Tmin; τc) > ARE(Tmax; τc) > N .

Note that while based on the first-order asymptotics it may be expected that in the symmetric case
the Max-LD-CUSUM test may perform as well as the Min-LD-CUSUM test, Monte Carlo simulations in
Section 9.1 show that the Min-LD-CUSUM test performs better even in the symmetric case. The same
conclusion has been reached by Moustakides [112] based on the analysis of a 2-sensor continuous-time
Brownian motion model.

7. Decentralized Detection Based on Quantization at Sensors for Known Models

Consider the scenario where based on the information available at sensor Si at time n a message Ui(n)
belonging to a finite alphabet of sizeMi (e.g., binary) is formed and sent to the fusion center (see Figure 9.2).
Write U(n) = (U1(n), . . . , UN (n)) for the vector ofN messages at time n. Based on the sequence of sensor
messages, a decision about the change is made at the fusion center. This test is identified with a stopping
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time on {U(n)}n>1 at which it is declared that a change has occurred. The goal is to find tests based on
{U(n)}n>1 that optimize the tradeoff between detection delay and false alarm rate.

Various information structures are possible for the decentralized configuration depending on how feed-
back and local information is used at the sensors. Here we consider the simplest information structure where
the message Ui(n) formed by sensor Si at time n is a function of only its current observation Xi(n), i.e.,
Ui(n) = ψi,n(Xi(n)). Moreover, since for a particular sensor Si, the sequence {Xi(n)}n>1 is assumed to
be iid, it is natural to confine ourselves by stationary quantizers for which the quantizing functions ψi,n do
not depend on n, i.e., ψi,n = ψi for all n > 1. The quantizing functions b̄ψ = {ψi; i = 1, . . . , N}, together
with the fusion center stopping time τ , form a policy φ = (b̄ψ, τ).

Let Hν be the hypothesis that the change occurs at time ν ∈ {1, 2, . . .}, and let H∞ be the hypothesis
that there is no change. Also, let g(0)

i and g(1)
i denote the probability mass function (pmf) induced on Ui

when the observation Xi(n) is distributed as fi and gi, respectively. Then, for fixed sensor quantizers, the
LLR between the hypotheses Hk and H∞ at the fusion center is given by

Zq(k, n) =
n∑
j=k

N∑
i=1

log
g

(1)
i (Ui(j))

g
(0)
i (Ui(j))

. (9.18)

Hereafter the superscript index q stands for quantized versions of the corresponding variables to distinguish
from the centralized case where we used the superscript c. For fixed sensor quantizers, the fusion center
faces a standard change detection problem based on the vector observation sequence {U(n)}.

Here the goal is to choose the policy φ that minimizes SADD(φ) defined by

SADD(φ) = sup
16ν<∞

Eν(τ − ν | τ > ν) (9.19)

while maintaining the ARL to false alarm at a level not less than γ > 1.
We can define the CUSUM and SR statistics byW q(n) = max06ν6n Z

q(ν, n) andRq(n) =
∑n

ν=1 e
Zq(ν,n),

respectively, which obey the recursions:

W q(n) = max {0,W q(n− 1) + Zq(n, n)} , W q(0) = 0;

Rq(n) = [1 +Rq(n− 1)] exp{Zq(n, n)}, Rq(0) = 0.
(9.20)

Then the CUSUM and SR detection procedures at the fusion center T qCS(h) and T qSR(a) are, respectively,
given by

T qCS(h) = min {n > 1: W q(n) > h} , T qSR(a) = min {n > 1: logRq(n) > a} , (9.21)

where h and a are positive thresholds which are selected so that ARL(T qCS) > γ and ARL(T qSR) > γ.
Let Iqi = E1[g

(1)
i (Ui(1))/g

(0)
i (Ui(1))] denote the K-L information number for quantized data in the

i-th sensor (i.e., divergence between g(1)
i and g(0)

i ), and let Iqtot =
∑N

i=1 I
q
i be the total K-L information

accumulated from all sensors.
Similar to (9.2) we obtain that detection procedures T qCS(h) and T qSR(h) given in (9.21), with h = a =

log γ, are asymptotically minimax optimal as γ →∞ among all procedures with ARL to false alarm greater
than γ (for fixed quantizers ψi). To be specific,

inf
τ∈Cγ

SADD(τ) ∼ SADD(T qCS) ∼ SADD(T qSR) ∼ log γ

Iqtot

as γ →∞.

This result immediately reveals how to choose the sensor quantizers: It is asymptotically optimum (as
γ → ∞) for sensor Si at time n to select ψi to maximize Iqi , the K-L information number. By Tsitsiklis
[176], an optimal ψi that maximizes Iqi is a monotone likelihood ratio quantizer (MLRQ), i.e., there exist
thresholds a1, a2, . . . , aMi−1 satisfying −∞ < a1 6 a2 6 · · · 6 aMi−1 such that

ψi,opt(Xi) = bi only if abi < Zi(Xi) 6 abi+1, (9.22)
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where Zi(Xi) = log[gi(Xi)/fi(Xi)] is the LLR at the observation Xi (at sensor Si). Note that function
ψi,opt is independent of n.

Thus, the asymptotically optimum policy φopt for a decentralized change detection problem consists of
a stationary (in time) set of MLRQs at the sensors followed by CUSUM or SR procedures based on {U(n)}
at the fusion center (as described in (9.21)).

For each i, we denote the corresponding pmfs induced on Ui(n) by g(1)
i,opt and g(0)

i,opt (i.e., at the output of
the stationary MLRQ ψi,opt that maximizes Iqi ). Then the effective total K-L information number between
the change and no-change hypotheses at the fusion center is given by

Iqtot,opt =

N∑
i=1

I(g
(1)
i,opt, g

(0)
i,opt). (9.23)

Further, we denote by T qCS and T qSR, respectively, the CUSUM and SR stopping rules at the fusion cen-
ter for the case where the sensor quantizers are chosen to be b̄ψopt = {ψi,opt}. Finally, we denote by
φopt = (b̄ψopt, T

q
CS) and φ̂opt = (b̄ψopt, T

q
SR) the corresponding CUSUM and SR policies, respectively,

with optimal quantization.
We also need the following additional notation:

Sq(n) =
n∑
k=1

N∑
i=1

log
g

(1)
i (Ui(k))

g
(0)
i (Ui(k))

, Sq(0) = 0; ηh = min {n > 1: Sq(n) > h} ;

ζq = lim
h→∞

E1 exp {−(Sq(ηh)− h)} , (9.24)

where ζq can be computed using renewal-theoretic arguments.

7.1. Optimality Properties of CUSUM and SR Procedures

The asymptotic performance of the asymptotically optimum solutions to the decentralized change detection
problem described above is given in the following theorem.

Theorem 7.1. Suppose Itot,opt is positive and finite.
(i) Then h = a = log γ implies that ARL(T qCS) > ARL(T qSR) > γ.
(ii) If, in addition, Zq(1, 1) is non-arithmetic, then

ARL(T qCS(h)) ∼ eh

ζ2
q I

q
tot,opt

, ARL(T qSR(a)) ∼ ea/ζq as h, a→∞; (9.25)

(iii) If a = h = log γ, then

inf
φ∈Cγ

SADD(φ) ∼ SADD(φopt) ∼ SADD(φ̂opt) ∼
log γ

Iqtot,opt

as γ →∞. (9.26)

If h = hγ = log[ζ2
q I

q
tot,optγ] and a = aγ = log(ζqγ), then ARL(T qCS(hγ)) ∼ γ and ARL(T qSR(aγ)) ∼ γ as

γ →∞ and asymptotic relations (9.26) hold.

7.2. Binary Quantization

We now continue by considering the simplest case where Ui(n) = ψi(Xi(n)) are the outputs of binary
quantizers and specify previous results for this case. Also, in the rest of this section we will consider only
the CUSUM detection procedure with understanding that analogous results hold for the SR procedure. It
follows from Theorem 7.1 that the optimal binary quantizer is the MLRQ that is given by

Ui = ψi(X) =

{
1 if Zi(X) = log[gi(X)/fi(X)] > ti,

0 otherwise,
(9.27)
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where ti is a threshold that maximizes the K-L information in the resulting Bernoulli sequence.
To be precise, for l = 0, 1, let g(i)

l denote the probability induced on Ui(n) when the observation Xi(n)

is in the pre- and post-change modes. Let β0,i = g
(i)
0 (Ui(j) = 1) and βi = g

(i)
1 (Ui(j) = 1) denote the

corresponding probabilities under the normal and the anomalous conditions, respectively. The resulting
binary (Bernoulli) sequences {Ui(j), i = 1, . . . , N}, j > 1 are then used to form the binary CUSUM
statistic similar to (9.20) as

W b(n) = max{0,W b(n− 1) +

N∑
i=1

Zbi (n))}, W b(0) = 0, (9.28)

where Zbi (n) = log
g

(i)
1 (Ui(n)))

g
(i)
0 (Ui(n))

is the partial LLR between the “change” and “no-change” hypotheses for the

binary sequence, which is given by
Zbi (n) = aiUi(n) + a0,i. (9.29)

Here

ai = log
βi(1− β0,i)

β0,i(1− βi)
, a0,i = log

1− βi
1− β0,i

.

Then the CUSUM detection procedure at the fusion center is given by the stopping time

T bCS(h) = min
{
n > 1: W b(n) > h

}
, (9.30)

where h is a positive threshold which is selected so that ARL(T bCS(h)) > γ. In what follows this detection
procedure will be referred to as the binary quantized CUSUM test (BQ-CUSUM).

The BQ-CUSUM procedure with h = log γ is asymptotically optimal as γ → ∞ in the class of tests
with binary quantization in the sense of minimizing the SADD in the class ∆(γ). More specifically, the
tradeoff curve for the optimal binary test is

SADD(T bCS) ∼ log γ

Ibtot

, γ →∞, (9.31)

where Ibtot =
∑N

i=1 maxti I
b
i (ti) is the total maximal K-L distance (optimized over the quantization thresh-

olds ti); Ibi (ti) = [βi(ti)ai(ti) + a0,i(ti)] is the K-L distance for the binary sequence in the i-th sensor for
the quantization threshold ti.

To optimize the performance, one should choose thresholds t1, . . . , tN so that the K-L divergence is
maximized, i.e.,

t0i = arg max
ti

Ibi (ti), l = 1, . . . , N, (9.32)

in which case the supremum average detection delay for the optimal BQ-CUSUM test is

SADD(T bCS) =
hγ

Ibtot(t
0)

+O(1) as γ →∞, (9.33)

where Ibtot(t
0) =

∑N
i=1 maxti I

b
i (ti) =

∑N
l=1 I

b
i (t

0
i ), and t0 = (t01, . . . , t

0
N ).

7.3. Relative Efficiency

The asymptotic relative efficiency (ARE) of a detection procedure τγ with respect to a detection procedure
ηγ , both of which meet the same lower bound γ for the ARL, will be defined as

ARE(τγ ; ηγ) = lim
γ→∞

SADD(τγ)

SADD(ηγ)
. (9.34)
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Using (9.2) and (9.31), we obtain that the ARE of the globally asymptotically optimal test ν with respect
to the BQ-CUSUM test T bCS is

ARE(ν;T bCS) = lim
γ→∞

infτ∈Cγ SADD(τ)

SADD(T bCS(hγ))
=
Ibtot

Itot
. (9.35)

Since Itot is always larger than Ibtot, the value of ARE < 1. However, our study presented below shows that:
(a) certain decentralized asymptotically globally optimal tests may perform worse in practically interesting
prelimit situations when the false alarm rate is moderately low but not very low, and (b) the centralized
CUSUM only 20-30% better (in terms of the ADD). We therefore conclude that the BQ-CUSUM test is
a good solution to the decentralized change detection problem whenever the post-change distribution is
completely specified.

It can be shown that for the three particular models, namely Gaussian N (0, 1) → N (θ, 1), Poisson
P(1) → P(θ), and Exponential Exp(1) → Exp(θ), the ARE is a monotone function of θ in the interval
[2/π, 1], and limθ→0 ARE(θ) = 2/π for the Gaussian model and limθ→1 ARE(θ) = 2/π for the other
two models. Also, limθ→∞ARE(θ) = 1 for all three models. Therefore, we expect that in the worst case
scenario (for close hypotheses) the loss due to binary quantization is about 36%, and it is small for far
hypotheses. This is confirmed by simulations.

For the sake of simplicity, consider a symmetric Gaussian case where the K-L information numbers are
identical in all sensors, N (0, 1) pre-change and N (θ, 1) post-change. Table 9.1 and Figure 9.3 illustrate
how the ARE evolves with respect to the parameter θ.

It is seen that in the vicinity of θ ≈ 0 the ARE is close to 2/π. While the ARE does not approach 1 too
fast, the real relative efficiency RE defined as the ratio of “real” ADDs reaches 1 very fast: for θ > 5 the
real relative efficiency is already 1, so no further improvement is possible/necessary. Specifically, the RE is
defined as RE(γ) = SADDcθ/SADD

b
θ, where the estimates of

SADDθ = max

{
0,

log γ

I
− 1

}
take into account that they cannot be smaller than 0. More accurate results obtained by Monte Carlo yield
similar conclusions. See Section 9.

8. A Decentralized Approach for Composite Hypotheses: Unknown Parameter Values

8.1. Impractical Approach – Worst-case Optimization

We begin with considering the approach that intuitively seems appealing but turns out to be almost com-
pletely impractical. Indeed, the first idea which deserves attention is to try optimizing in the Worst Case
Scenario (i.e., to optimize in the most unfavorable conditions with respect to the parameter value):

inf
θ>0

AREθ(t0(θ)) = inf
θ>0

max
t>0

AREθ(t) = lim
θ→0

AREθ(t0(θ)) = 2/π ≈ 0.637.

However, this approach is impractical, which is immediately confirmed by the following computations.
Possible but impractical solution: choose small θ = θ′ such that the detection with a reasonable delay is not
possible for smaller values; find t0(θ′) = t∗ that maximizes K-L; and use it in the distributed system. In
Table 9.2 we use θ′ = 0.1. It can be seen that the ARE decreases very fast when θ increases.

8.2. Practical Approach – Decentralized M-BQ-CUSUM Test

For this reason we now propose a different approach that is based on a multichart CUSUM that uses multiple
reference parameter values. The quantization thresholds are optimized for these reference points, where
component, partial BQ-CUSUM tests are optimal. As a result, this approach provides a quite accurate
approximation to the entire ADD envelop.
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Table 9.1: Numerical Results for the Gaussian Scenario (Two Sensors, N = 2)
θ 0.01 0.1 1 2 4 5

t0(θ) 0.00792 0.0792 0.7941 1.60083 3.28628 4.16375
Ic(θ) 0.00005 0.005 0.5 2 8 12.5

Ib(t0(θ)|θ) 0.000032 0.003183 0.318566 1.27879 5.234373 8.332713
AREθ 0.636619 0.636624 0.637133 0.639395 0.654297 0.666617

REθ(γ = 103) 0.636619 0.636624 0.637133 0.639395 0.757753 1
REθ(γ = 104) 0.636619 0.636624 0.637133 0.639395 0.654297 0.904713

Figure 9.3: Asymptotic relative efficiency.

Table 9.2: Numerical Results for the Gaussian Scenario and with Worst Case Optimization
θ 0.1 0.5 1.0 1.5 2.0 3.0 5.0

t0(θ) 0.0792 0.3963 0.7941 1.1951 1.6008 2.4306 4.1639
AREθ(t

∗) 0.637 0.614 0.533 0.423 0.315 0.166 0.061
AREθ(t0(θ)) 0.637 0.637 0.637 0.638 0.639 0.645 0.667
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As in Section 5, we define an interval [θ, θ] for the post-change parameter and M > 2 reference points
in this interval. The M-BQ-CUSUM procedure consists of implementing M BQ-CUSUM tests in parallel,
each tuned to and optimized with respect to the corresponding reference point.

To be specific, let θm ∈ [θ, θ],m = 1, 2, . . . ,M be a set of reference points. At each of these points, sen-
sors perform quantization of the observations using LLR-quantizers (9.27), i.e., for the m-th reference point
the outputs of the quantizers are Ul,m(n) = 1l{`m,l(n)>tm,l}, where `m,l(n) = log[gθml (Xl(n))/fµll (Xl(n))]
is the LLR tuned to θm. The quantization threshold tl,m is chosen so that the K-L divergence is maximized
for the corresponding point, i.e., for l = 1, . . . , N and m = 1, . . . ,M ,

IBQ

l,m(t0l,m) = arg max
tl,m>0

IBQ

l,m(tl,m), (9.36)

where IBQ

l,m = Eθm1 `BQ

l,m(1) = βg(l,m)ag(l,m) + af (l,m) is the K-L divergence for the binary sequence at
the m-th reference point in the l-th sensor, and all the notation is defined in Section 7.2. In particular, the
LLR `BQ

l,m(n) for the binary sequence at the m-th reference point is given by (9.29) with obvious inclusion
of the parameter θm.

The M-BQ-CUSUM stopping time is then defined as follows. First, we define the BQ-CUSUM statistics
for each of the reference points

WBQ
m (n) = max

{
0,WBQ

m (n) +
N∑
l=1

`BQ

l,m(n)

}
,

with WBQ
m (0) = 0, and the corresponding stopping times for the latter statistics

τBQ
m (hm) = min {n > 1: WBQ

m (n) > hm} .

The M-BQ-CUSUM stopping time is the minimum of these stopping times:

τMBQ(h) = min
16m6M

τBQ
m (hm), (9.37)

where h = (h1, h2, . . . , hM ), hm > 0.
Now, as it has been outlined in Section 7.2, if the true value of the parameter θ = θi, then the asymptot-

ically minimax-optimal solution to the changepoint problem in the class of binary quantizers is given by the
LLR-quantizer with the threshold t0l,i (in the l-th sensor), as specified in (9.36), followed by the BQ-CUSUM
stopping rule τBQ

i (hi) at the fusion center (see (9.30)). Combining this with Theorem 5.1 allows us to con-
clude that the proposed M-BQ-CUSUM procedure is asymptotically optimal in the class of procedures with
binary quantization when the post-change parameter is equal to reference points θ1, θ2, . . . , θM .

Exact results are given in the following theorem which follows from the above argument and Theo-
rem 5.1. We use the same notation for constants vm (0 < vm < 1) as above keeping in mind that in this
section they are computed for the Bernoulli sequences.

Theorem 8.1. Assume that LLR `BQ

l,m(1) is non-arithmetic.
(i) Let h1 = · · · = hM = h and let

h = h(γ) = log

(
γ

M∑
m=1

ζ2
m

N∑
l=1

IBQ

l,m(t0l,m)

)
.

Then, as γ →∞,

ARL(τMBQ(h(γ))) = γ(1 + o(1)),
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and, for all m = 1, . . . ,M ,

inf
τ∈b̄∆BQ(γ)

SADDθm(τ) ∼ SADDθm(τMBQ(h(γ))) ∼
log γ∑N

l=1 I
BQ

l,m(t0l,m)
. (9.38)

(ii) Let, for m = 1, . . . ,M ,

hm = hm(γ) = log

(
γMζ2

m

N∑
l=1

IBQ

l,m(t0l,m)

)
.

Then, as γ →∞,

ARL(τBQ,m(hm(γ))) = Mγ[1 + o(1)], m = 1, . . . ,M ;

ARL(τMBQ(h(γ))) = γ[1 + o(1)],

and, for all m = 1, . . . ,M , asymptotic relations (9.38) hold.

Therefore, M-BQ-CUSUM is asymptotically optimal in the class b̄∆BQ(γ) in the sense of minimizing
SADDθm , m = 1, . . . ,M at the reference points in both scenarios (with and without balancing). Note that
the results analogous to Theorem 5.1 (i)–(ii) also hold in the binary case considered.

Note that all the above formulas are valid for the exponential family. The quantization thresholds,
however, depend on the model. In the symmetric Gaussian example considered in Section 9.2, the optimal
thresholds for each sensors are the same. For the m-th CUSUM tuned to θ = θm, the threshold t0m is

t0m(θm) = arg max
t

{
Φ(t− θm) log

[
Φ(t− θm)

Φ(t)

]
+
(

1− Φ(t− θm)
)

log

[
1− Φ(t− θm)

1− Φ(t)

]}
,

and the corresponding numbers Jm(θ) are

Jm(θ) = Φ(t0m − θ) log

[
Φ(t0m − θ)

Φ(t0m)

]
+
(

1− Φ(t0m − θ)
)

log

[
1− Φ(t0m − θ)

1− Φ(t0m)

]
,

where Φ(x) is the standard Gaussian distribution function.

9. Monte Carlo Experiments

9.1. Monte Carlo Experiments for Simple Hypotheses

In this section, we present the results of MC experiments for the Poisson example where observations in the
i-th sensor Xi(n), n > 1 follow the common Poisson distribution P(µi) in the pre-change mode and the
common Poisson distribution P(θi) after the change occurs, i.e., for m = 0, 1, 2, . . . and ν = k,

Pk(Xi(n) = m) =

{
(µi)

m

m! e−µi for k > n,
(θi)

m

m! e
−θi for k 6 n,

where without loss of generality we assume that θi > µi.
Write Qi = θi/µi. It is easily seen that the LLR statistic in the i-th sensor has the form

Zn(i) = Xi(n) log(Qi)− µi(Qi − 1), (9.39)

and the K-L information numbers

Ii = θi logQi − µi(Qi − 1), i = 1, . . . , N. (9.40)
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It follows from (9.2), (9.40) and the above discussion that the centralized CUSUM and AO-LD-CUSUM
tests with the thresholds h = log γ are first-order globally asymptotically optimal and

inf
T∈Cγ

SADD(T ) ∼ SADD(τc) ∼ SADD(τld) ∼
log γ∑N

i=1[θi logQi − µi(Qi − 1)]
. (9.41)

This means that the ARE of these detection tests with respect to the globally optimal test is equal to 1.
In order to evaluate the ARE of an optimal test ν (e.g., the centralized CUSUM test τc) with respect to

the BQ-CUSUM test (9.30) we use (9.35), which yields

ARE(ν; τb) =

∑N
i=1 maxti [βi(ti)ai(t) + a0,i(ti)]∑N
i=1[θi logQi − µi(Qi − 1)]

, (9.42)

where the probabilities β0,i(t) and βi(t) are given by:

β0,i(ti) =
∞∑

k=dtie

µki e
−µi

k!
, βi(ti) =

∞∑
k=dtie

θki e
−θi

k!
.

The optimal values of t0i that maximize the K-L numbers are easily found based on these formulas.
Consider a symmetric case where µi = 10 and θi = 12 for all i = 1, . . . , N . Then Ii = I = 0.1879,
the optimum threshold is t0i = 12, and the corresponding maximum K-L distance for the binary sequence
Ibi (t

0
i ) = Ib = 0.119. Therefore, the loss in efficiency of the BQ-test compared to the globally asymptoti-

cally optimal detection procedure is ARE(ν; τb) = 0.119/0.1879 = 0.63, i.e., for the large ARL we expect
about 37% increase in the average detection delay compared to the centralized CUSUM (C-CUSUM). The
following MC simulations show that for the practically interesting values of the ARL (up to 13, 360) the
gain of the optimal C-CUSUM test is even smaller, while the AO-LD-CUSUM test performs worse than the
BQ-CUSUM test due to the reasons discussed in Section 6.1.

MC simulations have been performed for the above symmetric situation (i.e., µi = µ = 10 and θi =
θ = 12) with N = 5 sensors. We used 105 MC replications in the experiment. The operating characteristics
of the five detection tests (SADD vs log(ARL)) are shown in Figure 9.4. It is seen that the BQ-CUSUM test
substantially outperforms the AO-LD-CUSUM test for all false alarm rate range used in simulations. This
result confirms our conjecture. It is also seen that both Min-LD-CUSUM and Max-LD-CUSUM perform
worse than both BQ-CUSUM and AO-LD-CUSUM tests.

Table 9.3 shows the relative efficiency of the BQ-CUSUM procedure with respect to four other detection
procedures, which is defined as the ratio of average detection delays for the same ARL: SADD(τb)/SADD(ν),
where ν is a corresponding detection test, i.e., ν = τc, Tld, etc. It follows from the table that for the BQ-
CUSUM the increase in the SADD compared to the globally optimal centralized CUSUM is 34% for high
false alarm rate, 35% for moderate and low false alarm rate, and 37% for very low false alarm rate. Note that
the last column presents the ARE. On the other hand, the BQ-CUSUM outperforms the AO-LD-CUSUM
for all range of tested ARL values, from 33 to 13,360. The gain is 30% for high false alarm rate and slowly
reduces to 18% for low false alarm rate.

9.2. Monte Carlo Experiments for Composite Hypotheses

By means of Monte Carlo simulations, in this section we demonstrate the capabilities of the multi-chart
detection techniques proposed in Section 8.2. We are particularly interested in the relative efficiency (RE)
of the detection procedures as a function of the parameter θ. For two procedures, τ and η, the relative
efficiency of η with respect to τ at the point θ is defined as REθ(τ, η) = SADDθ(τ)/SADDθ(η), where it is
assumed that both procedures satisfy ARL ≈ γ. Note that limγ→∞REθ(τ, η) = AREθ(τ, η).

We consider a symmetric three-sensor scenario (N = 3), where for each sensor both the pre- and post-
change observations are iid unit-variance Gaussian random variables having expected values zero and θ > 0,
respectively. The observations are also assumed independent across the sensors.
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Figure 9.4: Operating characteristics of detection procedures.

Table 9.3: Relative Efficiency of the Decentralized BQ-CUSUM Test
log(ARL) 3.5 4.5 5.5 6.5 7.5 8.5 9.5 ∞

ARL 33 90 245 665 1808 4915 13360 ∞
Test Relative Efficiency of the Decentralized BQ-CUSUM Test

C-CUSUM 1.51 1.51 1.51 1.53 1.53 1.53 1.54 1.59
AO-LD-CUSUM 0.71 0.73 0.75 0.76 0.78 0.80 0.82 1.59
Min-LD-CUSUM 0.62 0.58 0.55 0.54 0.51 0.51 0.51 0.316
Max-LD-CUSUM 0.33 0.30 0.27 0.26 0.25 0.24 0.24 0.316
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All simulations have been performed for γ = 104 (relatively low FAR) and for θ between 0.05 and 1,
which ensures high enough SADDθ(τ) to be able to notice the difference in performance (e.g., SADDθ(τ) ≈
10 for θ = 1).

Most importantly, note that in order to minimize the communication load between the fusion center
and the sensors, it is desirable to use as few reference points as possible. Moreover, when the number of
reference points M increases, the ARL also increases. This requires higher threshold values, which in turn
leads to an increase of the detection delay. With this in mind, we considered the case of M = 2 and 3.

We begin with comparing centralized CUSUM procedures, C-CUSUM and M-C-CUSUM. The red
curve in Figure 9.5 represents the relative efficiency of the unbalanced 2-C-CUSUM (with a single threshold
hm = h) with reference points 0.1 and 0.9 with respect to C-CUSUM. It is seen that around the right
reference point θ2 = 0.9 RE is close to 1, while in the vicinity of the left reference point θ1 = 0.1 RE
is around 0.6. This is because the threshold is the same for both stopping times τC,1 and τC,2, in which
case ARL(τMC) ≈ ARL(τC,2(h)). As a result, for most of the values of the parameter the behavior of 2-C-
CUSUM is similar to that of C-CUSUM tuned to θ = 0.9. In order to have more efficient detection for small
changes, one has to use either more reference points or a symmetric 2-C-CUSUM (with different thresholds)
balancing mean times as in (9.11).

To improve the performance for small changes, we added an extra reference point 0.2. The blue curve in
Figure 9.5 shows the RE of 3-C-CUSUM with respect to C-CUSUM with reference points 0.1, 0.2 and 0.9.
Observe that the relative efficiency never drops below the level of approximately 80% for values of θ > 0.2,
and it is equal to 70% for θ = 0.1. For smaller values of θ, there is a drop in efficiency to approximately
50%. This is not surprising since this procedure is not designed to work with parameter values smaller than
0.1. We may conclude that adding the extra point does help. 3-C-CUSUM has a much better performance
for small values of the parameter compared to 2-C-CUSUM. However, there is still a disbalance between
the RE for small and large shifts.

Figure 9.6 (red curve) illustrates the performance of the 2-C-CUSUM in the balanced case (9.11) where
every reference point contributes equally to the performance of the whole scheme. Comparing with the red
curve in Figure 9.5, we observe that for the left reference point (0.1) the performance became much better
(88% vs. 65%), while for the right one (0.9) slightly worse (90% vs. 99%). For θ around 0.4, there is a dip
caused primarily by the fact that the reference points are too distant from each other.

To eliminate the drop in the middle we used an extra reference point 0.4. The result is shown in Fig-
ure 9.6, the blue curve. In this case the performance remains almost constant (uniform) for the entire range
of θ (between 85% and 90% for most parameter values, and over 80% for the entire range).

It is clear that if one is interested in relatively high efficiency for all parameter values (small, moderate
and large changes), then the proposed balanced approach can be recommended for implementation. How-
ever, if one is interested in rapid detection of only moderate and large changes, then the first unbalanced
approach with constant thresholds can be used.

We now proceed with the results of the experimental study of the binary quantized procedures. We
present the results only for unbalanced 3-BQ-CUSUM (with equal thresholds h1 = h2 = h3 = h). Fig-
ure 9.7 shows the relative efficiency of 3-BQ-CUSUM with respect to the optimal BQ-CUSUM (which
knows θ). The behavior is similar to that in the centralized case. As before, the relative efficiency stays
above the level of approximately 80% for values of θ > 0.2, while for small changes there is a drop in
efficiency to approximately 50%.

Figure 9.8 shows the relative efficiency of the binary 3-BQ-CUSUM with respect to the centralized 3-
C-CUSUM. RE remains at the level of approximately 70% for all parameter values. Therefore, increase
in the average detection delay of the procedure with binary quantization in three points (with rather low
requirements to communication bandwidth) is only 30% compared to the centralized scheme that requires
transmission of the original uncompressed data.

Finally, Table 9.4 summarizes the results of Monte Carlo simulations for asymmetric M-C-CUSUM
(with equal thresholds).
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Figure 9.5: Unbalanced M-C-CUSUM-to-C-CUSUM relative efficiency: γ = 104; reference points 0.1, 0.2
and 0.9.

Figure 9.6: Balanced M-C-CUSUM-to-C-CUSUM relative efficiency: γ = 104; reference points 0.1, 0.4
and 0.9.
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Figure 9.7: Unbalanced 3-BQ-CUSUM-to-BQ-CUSUM relative efficiency: γ = 104; reference points 0.1,
0.2 and 0.9.

Figure 9.8: Unbalanced 3-BQ-CUSUM-to-3-C-CUSUM relative efficiency: γ = 104; reference points 0.1,
0.2 and 0.9.
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Table 9.4: Summary of Numerical Results for the Gaussian Scenario (N = 3, M = 3, γ = 104)
θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SADD(τC) 269.31 89.22 45.06 27.32 18.32 13.13 9.83 7.58 6.0
SADD(τBQ) 380.64 128.2 66.02 40.38 27.32 19.69 14.85 11.66 9.32
SADD(τMC) 394.72 112.6 57.75 35.55 22.6 15.18 10.59 7.92 6.12
SADD(τMBQ) 551.75 163.35 83.18 50.62 32.42 22.1 15.65 12.06 9.41

RE(τMBQ; τBQ) 0.69 0.78 0.79 0.8 0.84 0.89 0.95 0.97 0.99
RE(τMBQ; τMC) 0.69 0.69 0.69 0.7 0.7 0.69 0.68 0.66 0.65
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Chapter 10

Some Variants of the Quickest Change
Detection Problem and Their Solutions

This chapter is intended to summarize contributions of the group of Dr. Veeravalli to two variants of the
quickest change detection problem and their solutions.

1. Quickest Change Detection of a Markov Process Across a Sensor Array

In the standard formulation of the change detection problem, there is a sequence of observations whose
density changes at some unknown point in time and the goal is to detect the changepoint as soon as possible.
However, in many scenarios such as detecting pollutants and biological warfare agents, the change process
is governed by the movement of the agent through the medium. Thus, it is more suitable to consider the case
where the statistics of each sensor’s observations may change at different points in time.

In this work, we consider a Bayesian version of this problem and assume that the point of disruption
(that needs to be detected) is a random variable with a geometric distribution. More general disruption
models can be considered, but the case of a geometric prior has an intuitive and appealing interpretation
due to the memorylessness property of the geometric random variable. In addition, the practically relevant
rare disruption regime can be obtained by letting the geometric parameter go to zero. We assume that the
L sensors are placed in an array or a line and they observe the change as it propagates through them. The
progression of change in only one strictly determined direction can be thought as a first approximation to
more realistic situations. The inter-sensor delay is modeled with a Markov model and in particular, the
focus is on the case where the inter-sensor delay is also geometric. This model can be viewed as a first order
approximation to more general propagation models, with the zero-th order model being the case where the
statistical properties of the sensors’ observations change at the same time.

We study the centralized case, where the fusion center has complete information about the observations
at all the L sensors, the change process statistics, and the pre- and the post-change densities. This is appli-
cable in scenarios where: i) the fusion center is geographically collocated with the sensors so that ample
bandwidth is available for reliable communication between the sensors and the fusion center; and ii) the
impact of the disruption-causing agent on the statistical dynamics of the change process and the statistical
nature of the change so induced can be modeled accurately. Note that under the centralized model, the
special case where the change happens at the same time at all sensors corresponds to the standard (single
sensor) quickest change detection problem Shiryaev [149] with an L-vector observation.

1.1. Problem Formulation

Consider a distributed system with an array of L sensors, as in Figure 10.1, that observes an L-dimensional
discrete-time stochastic process Zk = [Zk,1, · · · , Zk,L], where Zk,` is the observation at the `-th sensor at
the k-th time instant. A disruption in the sensing environment occurs at the random time instant Γ1, and
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Figure 10.1: Changepoint detection across a linear array of sensors.

hence, the density1 of the observations at each sensor undergoes a change from the null density f0 to the
alternate density f1.
Change Process Model: We consider a change process where the change-point evolves across the sensor
array. In particular, the change-point as seen by the `-th sensor is denoted as Γ`. We assume that the
evolution of the change process is Markovian across the sensors. That is,

P
(
{Γ`1+`2+`3 = m1 +m2 +m3}

∣∣{Γ`1+`2 = m1 +m2}, {Γ`1 = m1}
)

= P
(
{Γ`1+`2+`3 = m1 +m2 +m3}

∣∣{Γ`1+`2 = m1 +m2}
)

for all `i and mi ≥ 0, i = 1, 2, 3. Further simplification of the analysis is possible under a joint-geometric
model on {Γ`}. Under this model, the change-point (Γ1) evolves as a geometric random variable with
parameter ρ, and inter-sensor change propagation is modeled as a geometric random variable with parameter
{ρ`−1,`, ` = 2, · · · , L}. That is,

P
(
{Γ1 = m}

)
= ρ (1− ρ)m , m ≥ 0 and

P
(
{Γ` = m1 +m2}

∣∣{Γ`−1 = m2}
)

= ρ`−1,` (1− ρ`−1,`)
m1 , m1 ≥ 0

independent of m2 ≥ 0 for all ` such that 2 ≤ ` ≤ L. We will find it convenient2 to set ρ0,1 = ρ and
ρL,L+1 = 0 so that ρ`−1,` is defined for all ` = 1, · · · , L+ 1.

While a joint-geometric model is consistent with the Markovian assumption as only the inter-sensory
(one-step) propagation parameters are modeled, the change-points at the individual sensors themselves are
not geometric. The joint-geometric model can be viewed as a first order approximation of more realistic
propagation scenarios. In particular, note that ρ→ 1 corresponds to the case where instantaneous disruption
(that is, the event {Γ1 = 0}) has a high probability of occurrence. On the other hand, ρ → 0 uniformizes
the change-point in the sense that the disruption is equally likely to happen at any point in time. This
case where the disruption is “rare” is of significant interest in practical systems Basseville and Nikiforov
[15], Poor and Hadjiliadis [130], Tartakovsky and Veeravalli [170, 171, 174], Veeravalli [181]. This is also
the case where we will be able to make insightful statements about the structure of the optimal stopping
rule. Similarly, we can also distinguish between two extreme scenarios at sensor ` depending on whether
ρ`−1,` → 0 or ρ`−1,` → 1. The case where ρ`−1,` → 1 corresponds to instantaneous change propagation
at sensor ` and {Γ` = Γ`−1} with high probability. The case where ρ`−1,` → 0 corresponds to uniformly

1We assume that the pre-change (f0) and the post-change (f1) densities exist.
2This is also consistent with an equivalent (L+ 2)-sensor system where sensor indices run through {` = 0, · · · , L+ 1}.

173



Final Technical Report ARO MURI Grant # W911NF-06-1-0094: Spatio-Temporal Nonlinear Filtering with Applications to Information Assurance and Counter Terrorism

likely propagation delay. The widely-used assumption of instantaneous change propagation across sensors
is equivalent to assuming ρ`−1,` = 1 for all ` = 2, · · · , L.
Observation Model: To simplify the study, we assume that the observations (at every sensor) are indepen-
dent, conditioned3 on the change hypothesis corresponding to that sensor, and are identically distributed
pre- and post-change, respectively. That is,

Zk,` ∼
{

i.i.d. f0 if k < Γ`,
i.i.d. f1 if k ≥ Γ`.

We will describe the above assumption as that corresponding to an “i.i.d. observation process.” LetD(f1, f0)
denote the Kullback-Leibler divergence between f1 and f0. That is,

D(f1, f0) =

∫
log

(
f1(x)

f0(x)

)
f1(x)dx.

We also assume that the measure described by f0 is absolutely continuous with respect to that described by
f1. That is, if f1(x) = 0 for some x, then f0(x) = 0. This condition ensures that E•|f1

[
f0(•)
f1(•)

]
= 1.

Performance Metrics: We consider a centralized, Bayesian setup where a fusion center has complete knowl-
edge of the observations from all the sensors, Ik , {Z1, · · · ,Zk}, in addition to knowledge of statistics of
the change process (equivalently, {ρ`−1,`}) and statistics4 of the observation process (equivalently, f0 and
f1). The fusion center decides whether a change has happened or not based on the information, Ik, available
to it at time instant k (equivalently, it provides a stopping rule or stopping time τ ).

The two conflicting performance measures for quickest change detection are the probability of false
alarm, PFA , P

(
{τ < Γ1}

)
, and the average detection delay, ADD , E [(τ − Γ1)+], where x+ =

max(x, 0). This conflict is captured by the Bayes risk, defined as,

R(c) , PFA + cADD

= E
[
11
(
{τ < Γ1}

)
+ c (τ − Γ1)+]

for an appropriate choice of per-unit delay cost c, where 11
(
{·}
)

is the indicator function of the event {·}.
We will be particularly interested in the regime where c → 0. That is, a regime where minimizing PFA is
more important than minimizing ADD, or equivalently, the asymptotics where PFA→ 0.

The goal of the fusion center is to determine

τopt = arg inf
τ ∈∆α

ADD(τ)

from the class of change-point detection procedures ∆α =
{
τ : PFA(τ) ≤ α

}
for which the probability of

false alarm does not exceed α. In other words, the fusion center needs to come up with a strategy (a stopping
rule τ ) to minimize the Bayes risk.

1.2. Dynamic Programming Framework

It is straightforward to check that Shiryaev [149, pp. 151-152] the Bayes risk can be written as

R(c) = P
(
{Γ1 > τ}

)
+ cE

[
τ−1∑
k=0

P
(
{Γ1 ≤ k}

)]
.

Towards solving for the optimal stopping time, we restrict attention to a finite-horizon, say the interval [0, T ],
and proceed via a dynamic programming (DP) argument.

3More general observation (correlation) models are important in practical settings. This will be the subject of future work.
4We assume that the fusion center has knowledge of f0 and f1 so that it can use this information to declare that a change has

happened. Relaxing this assumption is important in the context of practical applications and is the subject of current work.
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The state of the system at time k is the vector Sk = [Sk,1, . . . , Sk,L] with Sk,` denoting the state at
sensor `. The state Sk,` can take the value 1 (post-change), 0 (pre-change), or t (terminal). The system goes
to the terminal state t, once a change-point decision τ has been declared. The state evolves as follows:

Sk,` = f(Sk−1,`,Γ`, 1{τ≤k}),

where the transition function is given as

f(s, γ, a) =


0 if γ > k, s 6= t, a = 0,
1 if γ ≤ k, s 6= t, a = 0,
t if s = t or a = 1

with S0 = 0. Since Sk−1 captures the information contained in {Γ` ≤ j} for 0 ≤ j ≤ k − 1 and all `,
given Sk−1, {Γ` ≤ k} is independent of {Γ` ≤ j, j ≤ k − 1} for all `. Thus, the state evolution satisfies
the Markov condition needed for dynamic programming.

The state is not observable directly, but only through the observations. The observation equation can be
written as

Zk,` = V
(Sk,`)
k,` 11

(
{Sk,` 6= t}

)
+ ξ11

(
{Sk,` = t}

)
, ` ≥ 1

where V (0)
k,` and V (1)

k,` are the k-th samples from independently generated infinite arrays of i.i.d. data accord-
ing to f0 and f1, respectively. When the system is in the terminal state, the observations do not matter (since
a change decision has already been made) and are hence denoted by a dummy random variable, ξ. It is
clear that the observation uncertainty (V

(0)
k,` , V

(1)
k,` ) satisfies the necessary Markov conditions for dynamic

programming since they are i.i.d. in time.
Finally, the expected cost (Bayes risk) can be expressed as the expectation of an additive cost over time

by defining
gk(Sk) = c11

(
{Sk,1 = 1}

)
and a terminal cost 11

(
{Sk,1 = 0}

)
. Thus the problem fits the standard dynamic programming framework

with termination Bertsekas [22], with the sufficient statistic (belief state) being given by

P
(
{Sk = sk}|Ik

)
,

where Ik = {Z1, . . . ,Zk} for k such that Sk 6= t, i.e., Sk,` ∈ {0, 1} for each `. Note that this sufficient
statistic is described by 2L conditional probabilities, corresponding to the 2L values that sk can take. We will
next see that this sufficient statistic can be further reduced5 to only L independent probability parameters in
the general case.

The fusion center determines τ , and hence, the minimum expected cost-to-go at time k for the above
DP problem can be seen to be a function of Ik. For a finite horizon T , the cost-to-go function is denoted as
J̃Tk (Ik) and is of the form (see Bertsekas [22, p. 133], Veeravalli [181], for examples of similar nature):

J̃TT (IT ) = P
(
{Γ1 > T}

∣∣IT )
J̃Tk (Ik) = min

{
P
(
{Γ1 > k}

∣∣Ik), cP ({Γ1 ≤ k}
∣∣Ik)

+E
[
J̃Tk+1(Ik+1)

∣∣Ik]}, 0 ≤ k < T

where I0 is the empty set. The first term in the above minimization corresponds to the cost associated with
stopping at time k, while the second term corresponds to the cost associated with proceeding to time k + 1
without stopping. The minimum expected cost for the finite-horizon optimization problem is J̃T0 (I0).

5This should not be entirely surprising as our assumption of a line (or array) geometry imposes a “natural” ordering on the
sensors’ change-points. They can be arranged in non-decreasing order: Γ` ≥ Γ`−1 for all `.
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Recursion for the Sufficient Statistics: We define an (L+ 1)-tuple of conditional probabilities, {pk,`, ` =
1, · · · , L+ 1}:

pk,` , P
({

Γ`−1 ≤ k,Γ` > k
}∣∣Ik).

We now show that pk , [pk,1, · · · , pk,L+1] can be obtained from pk−1 via a recursive approach. For this,
we note that the underlying probability space Ω in the setup can be partitioned as

Ω =

L+1⋃
`=1

Tk,` where

Tk,` ,
{

Γ`−1 ≤ k,Γ` > k
}
.

The event where no sensor has observed the change is denoted as Tk,1. On the other hand, Tk,` (for ` ≥ 2)
corresponds to the event where the maximal index of the sensor that has observed the change before time
instant k is `− 1.

Observe that pk,` is the probability of Tk,` conditioned on Ik. To show that pk,` can be written in terms
of pk−1, the observations Zk and the prior probabilities, we partition Tk,` further as

Tk,` =
⋃̀
j=1

Uk,`,j

Uk,`,j ,
{

Γj−1 ≤ k − 1,Γj = k, · · · ,Γ`−1 = k,

Γ` ≥ k + 1
}
, 1 ≤ j ≤ `.

Note that Uk,`,j ∩Tk−1,j = Uk,`,j . Using the new partition {Uk,`,j , j = 1, · · · , `} and applying Bayes’ rule
repeatedly, it can be checked that pk,` can be written as

pk,` =

∑`
m=1 f (Zk|Ik−1, Uk,`,m)P (Uk,`,m|Ik−1)∑L+1

j=1

∑j
m=1 f(Zk|Ik−1, Uk,j,m)P (Uk,j,m|Ik−1)

,
N`∑L+1
j=1 Nj

(10.1)

where f(·|·) denotes the conditional probability density function of Zk and N` denotes the numerator term.
From the i.i.d. assumption on the statistics of the observations, the first term within the summation for

N` can be written as:

f (Zk|Ik−1, Uk,`,m) =

`−1∏
j=1

f1(Zk,j)

L∏
j=`

f0(Zk,j)

=

`−1∏
j=1

Lk,j

L∏
j=1

f0(Zk,j)

where Lk,j , f1(Zk,j)
f0(Zk,j)

is the likelihood ratio of the two hypotheses given that Zk,j is observed at the j-th
sensor at the k-th instant. For the second term, observe from the definitions that

P (Uk,`,m|Ik−1) = P (Tk−1,m|Ik−1)
P (Uk,`,m)

P (Tk−1,m)
.
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Thus, we have

N` =

(∑̀
m=1

P (Uk,`,m)

P (Tk−1,m)
pk−1,m

)
`−1∏
m=1

Lk,m

L∏
m=1

f0(Zk,m)

,

(∑̀
m=1

wk,`,m pk−1,m

)
Φobs(k, `) (10.2)

where the first part is a weighted sum of pk−1,m with weights decided by the prior probabilities, and the
second part of the evolution equation, Φobs(k, `), can be viewed as that part that depends only on the
observation Zk.

Many observations are in order at this stage:

• The above expansion for N` can be explained intuitively: If the maximal sensor index observing the
change by time k is `− 1, then the maximal sensor index observing the change by time k − 1 should
be from the set {0, · · · , `− 1}.

• Using the joint-geometric model for {Γ`}, it can be shown that wk,`,m is of the form:

wk,`,m =
P (Uk,`,m)

P (Tk−1,m)

= (1− ρ`−1,`) ·
`−2∏

j=m−1

ρj,j+1

, (1− ρ`−1,`) · w`m

N` =
`−1∏
m=1

Lk,m

L∏
m=1

f0(Zk,m) · (1− ρ`−1,`)

(∑̀
m=1

pk−1,m · w`m

)
(10.3)

with the understanding that the product term in the definition of w`m is vacuous (and is to be replaced
by 1) if m = `. It is important to note that the joint-geometric assumption renders the weights
(wk,`,m) associated with pk−1,m independent of k. This will be useful later in establishing convergence
properties for the DP.

• It is important to note that given a fixed value of `, pk,` is dependent on the entire vector pk−1 and
not on pk−1,` alone. Thus, the recursion for N` implies that pk forms the sufficient statistic and the
function J̃Tk (Ik) can be written as a function of only pk, say JTk (pk). The finite-horizon DP equations
can then be rewritten as

JTT (pT ) = pT,1

JTk (pk) = min
{
pk,1, c(1− pk,1) +ATk (pk)

}
with

ATk (pk) , E[JTk+1(pk+1)|Ik]

=

∫ [
JTk+1

(
pk+1

)
f (Zk+1|Ik)

] ∣∣∣
Zk+1=z

dz.

Note that the previously established recursion for pk+1 implies that pk+1 = g(pk,Zk+1) for an
appropriate choice of g(·, ·) (the precise form of g(·, ·) is clear from equations (10.1) and (10.2))
which ensures that the right-hand side is indeed a function of pk.
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• It is easy to check that the general framework reduces to the special case when all the change-points
coincide with Γ1. In this case, as in Veeravalli [181], we define pk , P

(
{Γ1 ≤ k}

∣∣Ik). Note that
only Tk,1 and Tk,L+1 are non-empty sets with

Tk,1 = {Γ1 ≥ k + 1}, Tk,L+1 = {Γ1 ≤ k},
pk,L+1 = pk, pk,1 = 1− pk, pk,` = 0, ` = 2, · · · , L.

Furthermore, the recursion for pk reduces to

pk =
N∏L

j=1 f0(Zk,j) (1− pk−1) (1− ρ) +N

N =

L∏
j=1

f1(Zk,j) ((1− pk−1)ρ+ pk−1)

which coincides with Veeravalli [181, eqn. (13)-(15)]. This case can also be obtained from the formula
in (10.3) by setting ρ`−1,` = 1 for all ` with 2 ≤ ` ≤ L.

1.3. Structure of the Optimal Stopping Rule (τopt)

The goal of this section is to study the structure of the optimal stopping rule, τopt. For this, we follow the
same outline as in [22] and study the infinite-horizon version of the DP problem by letting T →∞.

Theorem 1.1. Let p = [p1, · · · , pL+1] be an element of the standard L-dimensional simplex P , defined as,
P ,

{
p :

∑L+1
j=1 pj = 1

}
. The infinite-horizon cost-to-go for the DP is of the form

J(p) = min
{
p1, c(1− p1) +AJ(p)

}
,

where the function AJ(p): i) is concave in p over P; ii) is bounded as 0 ≤ AJ(p) ≤ 1; and iii) satisfies
AJ(p) = 0 over the hyperplane

{
p : p1 = 0

}
.

Proof. See Raghavan and Veeravalli [133].

At this stage, it is a straightforward consequence that the optimal stopping rule is of the form

τopt = inf
k

{
pk,1(1 + c)− c < AJ(pk)

}
.

That is, a change is declared when the hyperplane on the left side is exceeded by AJ(pk) and no change is
declared, otherwise. We will next see that this test characterization reduces to a degenerate one as ρ→ 0.

To establish this degeneracy, we define the following one-to-one and invertible transformation:

qk,` =
pk,`
ρpk,1

⇐⇒ pk,` =
qk,`∑L+1
j=1 qk,j

, ` = 1, · · · , L+ 1

which is equivalent to

pk,1 =
1

1 + ρ
∑L+1

j=2 qk,j
and

pk,` =
ρ qk,`

1 + ρ
∑L+1

j=2 qk,j
, ` = 2, · · · , L+ 1.
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We can write q0,` in terms of the priors as

q0,1 =
p0,1

ρp0,1
=

1

ρ
,

q0,` =
p0,`

ρp0,1
=
P
(
{Γ1 = · · · = Γ`−1 = 0,Γ` > 0}

)
ρP
(
{Γ1 > 0}

)
=

∏`−2
j=0 ρj,j+1 (1− ρ`−1,`)

ρ (1− ρ)
, ` = 2, · · · , L+ 1.

Note that while pk,` are conditional probabilities of certain events, and hence, lie in the interval [0, 1], the
range of qk,` is in general [0,∞).

It can be checked that the evolution equation can be rewritten in terms of qk,` as

qk,` =
1− ρ`−1,`

1− ρ ·
`−1∏
j=1

Lk,j ·

∑̀
j=1

qk−1,jw
`
j

 . (10.4)

It is interesting to note from (10.4) that the update for qk,` is a weighted sum of qk−1,j , j = 1, · · · , ` with
progressively decreasing weight as j increases. Similarly, we can define JTk (·) and ATk (·) in terms of b̄qk.
Using the transformation {qk,`}, τopt is seen to have the form:

τopt = inf
k

{
L+1∑
`=2

qk,` >
1−AJ(b̄qk)

ρ
(
c+AJ(b̄qk)

)} .
When all Γ` coincide, we have

qk,L+1 =
pk

ρ(1− pk)
, qk,

qk,1 =
1

ρ
, qk,` = 0, ` = 2, · · · , L.

Further, it is straightforward to check that the evolution in (10.4) reduces to

qk,L+1 =

∏L
j=1 Lk,j

1− ρ · (1 + qk−1,L+1) , (10.5)

Thus, the space of sufficient statistics and the optimal test reduce to a one-dimensional variable (pk =
P
(
{Γ1 ≤ k}

∣∣Ik) or equivalently, qk) and a threshold test on pk (or equivalently, on qk), respectively. In
the general case, unless something more is known about the structure of AJ(·) (which is possible if there is
some structure on {ρ`−1,`}), we cannot say more about τopt. Nevertheless, the following theorem establishes
its structure in the practical setting of a rare disruption regime (ρ → 0). The limiting test thresholds (from
below) the a posteriori probability that no-change has happened, and is denoted as νA.

Theorem 1.2. The test structure corresponding to τopt converges in probability to a simple threshold oper-
ation in the asymptotic limit as ρ→ 0. This limiting test is of the form:

νA =

 Stop if log
(∑L+1

`=2 qk,`

)
≥ A

Continue if log
(∑L+1

`=2 qk,`

)
< A

for an appropriate choice of threshold A.
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Proof. See Raghavan and Veeravalli [133].

The test νA is of low-complexity because of the following properties: i) a simple recursion formula (10.4)
for the sufficient statistics; ii) a threshold operation for stopping; and iii) the threshold value that can be pre-
computed given the PFA constraint (see Prop. 1.3).

The fact that τopt
ρ↓0→ νA for an appropriate choice of A does not imply that νA is asymptotically (as

PFA → 0 or as ρ → 0) optimal. However, the low-complexity of this test, in addition to Theorem 1.2, and
the fact that the structure of AJ(b̄qk) (and hence, τopt) are not known suggest that it is a good candidate
test for change detection across a sensor array. In fact, we will see this to be the case when we establish
sufficient conditions under which νA is asymptotically optimal.

1.4. Main Results on νA
Towards this end, our main interest is in understanding the performance (ADD vs. PFA) of νA for any
general choice of threshold A.
Special Cases of Change Parameters: To build intuition, we start by considering some special scenarios of
change propagation modeling. The first scenario corresponds to the case where one (or more) of the ρ`−1,`

is 1. The following proposition addresses this setting.

Proposition 1.1. Consider an L-sensor system described in Sec. 1.1, parameterized by {ρ`−1,`}, where
ρ`′,`′+1 = 1 for some `′ and max

j 6=`′
ρj,j+1 < 1. This system is equivalent to an (L − 1)-sensor system,

parameterized by {δ`,`+1}, where

δj,j+1 = ρj,j+1, j ≤ `′ − 1

δj,j+1 = ρj+1,j+2, j ≥ `′

with the (`′+ 1)-th sensor observing (a combination of) Zk,`′+1 and Zk,`′+2 with a geometric delay param-
eter of δ`′,`′+1 = ρ`′+1,`′+2.

Proof. The proof is straightforward by studying the evolution of {qk,`} for the original L-sensor system.
From (10.4), it can be seen that qk,`′+1 = 0 (identically) for all k and the reduced (L − 1)-dimensional
system discards this redundant information, while the observation corresponding to the (`′ + 1)-th sensor is
carried over to the (`′ + 2)-th original sensor.

The second scenario corresponds to the case where one (or more) of the ρ`−1,` is 0.

Proposition 1.2. Consider an L-sensor system, parameterized by {ρ`−1,`}, with `′ indicating the smallest
index such that ρ`′,`′+1 = 0. This system is equivalent to an `′-sensor system with the same parameters as
that of the original system. It is as if sensors (`′ + 1) and beyond do not exist (or contribute) in the context
of change detection.

Proof. The proof is again straightforward by considering the evolution of {qk,`} in (10.4) and noting that
qk,j , j ≥ `′ + 2 are identically 0 for all k.

It is useful to interpret Props. 1.1 and 1.2 via an “information flow” paradigm. If change propagation is
instantaneous across a sensor (corresponding to the first case), it is as if the fusion center is oblivious to the
presence of that sensor conditioned upon the previous sensors’ observations. In this setting, the detection
delay corresponding to that sensor is zero, as would be expected from the fact that the geometric parameter
is 1. In the second case, information flow to the fusion center (concerning change) is cut-off or blocked past
the first sensor with a geometric parameter of 0. That is, the observations made by sensors {`′ + 1, · · · , L}
(if any) do not contribute information to the fusion center in helping it decide whether the disruption has
happened or not. Apart from these extreme cases of oblivious/blocking sensors, we can assume without
loss in generality that

0 < min
`
ρ`−1,` ≤ max

`
ρ`−1,` < 1.
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Continuity arguments suggest that if some ρ`−1,` is small (but non-zero), it should be natural to expect that
the `-th sensor and beyond may not “effectively” contribute any information to the fusion center. We will
interpret this observation after establishing performance bounds for νA.
Probability of False Alarm: We first show that letting A→∞ in νA corresponds to considering the regime
where PFA→ 0.

Proposition 1.3. The probability of false alarm with νA can be upper bounded as

PFA ≤ 1

1 + ρ · exp(A)
.

That is, if α ≤ 1 and the threshold A is set as A = log
(

1
ρα

)
, then PFA ≤ α.

Proof. See Raghavan and Veeravalli [133].

Universal Lower Bound on ADD: We now establish a lower bound on ADD for the class of stopping times
∆α. That is, any stopping time τ should have an ADD larger than the lower bound if PFA is to be smaller
than α.

Proposition 1.4. Consider the class of stopping times ∆α = {τ : PFA(τ) ≤ α}. Under the assumption
that min

`=2,··· ,L
ρ`−1,` > 0, we have

inf
τ ∈∆α

ADD(τ) ≥ | log(α)| · (1 + o(1))

LD(f1, f0) + | log(1− ρ)| as α→ 0

where the o(1) term converges to zero as α→ 0.

Proof. See Raghavan and Veeravalli [133].

Upper Bound on ADD of νA: We will now establish an upper bound on ADD of νA.

Theorem 1.3. Let {ρ`−1,`} be such that 0 < min
`
ρ`−1,` ≤ max

`
ρ`−1,` < 1. Further, assume that D(f1, f0)

be such that there exists some j satisfying ` ≤ j ≤ L and

D(f1, f0) >
1

j − `+ 1
log

(∑`−1
p=0(1− ρp,p+1)

1− ρj,j+1

)
, (10.6)

for all 2 ≤ ` ≤ L. Then, the performance of νA with A = log
(

1
ρα

)
is given by

E [νA] ≤ | log(ρα)| · (1 + o(1))

LD(f1, f0) + | log (1− ρ) | as α→ 0.

Corollary 1.1. Combining Prop. 1.4 and Theorem 1.3, it can be seen that νA is asymptotically optimal (as
α→ 0) for any fixed ρ > 0. In other words,

inf
τ ∈∆α

ADD(τ) ∼ E [νA]

where we have used the notation Xα ∼ Yα as α→ 0 to mean lim
α→0

Xα
Yα

= 1.
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The proof of Theorem 1.3 in the general case of an arbitrary number (L) of sensors with an arbitrary
choice of {ρ`−1,`} results in cumbersome analysis. Hence, it is worthwhile to consider the special case of
two sensors that can be captured by just two change parameters: ρ and ρ1,2. The main idea that is necessary
in tackling the general case is easily exposed in the L = 2 setting in the following result. The general case
is carefully studied in Raghavan and Veeravalli [133]..

Proposition 1.5. (L = 2) The stopping time νA is such that νA → ∞ as A → ∞. Further, if D(f1, f0)
satisfies

D(f1, f0) > log (2− ρ− ρ1,2) ,

we also have

lim
A→∞

E[νA]

A
≤ 1

2D(f1, f0) + | log (1− ρ) | .

1.5. Discussion and Numerical Results

Discussion: A loose sufficient condition for all the L sensors to contribute to the slope of ADD of νA is that

D(f1, f0) > max
`=1,··· ,L−1

min
j≥`+1

1

j − ` · log

(∑`
p=0(1− ρp,p+1)

1− ρj,j+1

)
, γu.

Another sufficient condition is that

D(f1, f0) > max
`=1,··· ,L−1

1

L− ` · log

1− ρ+
∑̀
j=1

(1− ρj,j+1)

 .

That is, if ρ is such that

ρ ≥
L∑
`=2

(1− ρ`−1,`),

then γu ≤ 0 and the condition of Theorem 1.3 reduces to a mild one that the K-L divergence between
f1 and f0 be positive. A special setting where the above condition is true (irrespective of the rarity of
the disruption-point) is the regime where change propagates across the sensor array “quickly.” The case
instantaneous propagation is an extreme example of this regime and Theorem 1.3 recaptures this extreme
case.

In more general regimes where change propagates across the sensor array “slowly”, either the disruption-
point should become less rare (independent of the choice of f1 and f0) or that the densities f1 and f0

be sufficiently discernible (independent of the rarity of the disruption-point) so that all the L sensors can
contribute to the asymptotic slope. When these conditions fail to hold, it is not clear whether the theorems
are applicable, or even if all the L sensors contribute to the slope of E[νA]. Nevertheless, it is reasonable to
conjecture that as long as min

`
ρ`−1,` > 0, then all the L sensors contribute to the asymptotic slope.

However, the difference between the asymptotic and the non-asymptotic regimes needs a careful revisit.
Following the initial remark (Prop. 1.2) on the extreme case of blocking sensors (where some ρ`−1,` = 0),
in the more realistic case where some ρ`−1,` may be small (but non-zero), it is possible that if D(f1, f0)
is smaller than some threshold value (determined by the change propagation parameters), not all of the L
sensors may “effectively” contribute to the slope of ADD, at least for reasonably small, but non-asymptotic
values of PFA. For example, see the ensuing discussion where numerical results illustrate this behavior at
PFA values of 10−4 to 10−5 for some choice of change propagation parameters, even when the condition in
Theorem 1.3 is met. When the condition in Theorem 1.3 is not met, such a behavior is expected to be more
typical.
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Numerical Study I – Performance Improvement with νA: Given that the structure of τopt is not known
in closed-form, we now present numerical studies to show that νA results in substantial improvement in
performance over both a single sensor test (which uses the observations only from the first sensor and
ignores the other sensor observations) and a test that uses the observations from all the sensors but under
a mismatched model (where the change-point for all the sensors is assumed to be the same), even under
realistic modeling assumptions.
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Figure 10.2: Probability of false alarm vs. Average detection delay for a L = 2 setting with ρ = 0.001 and
ρ1,2 = 0.1.

The first example corresponds to a two sensor system where the occurrence of change is modeled as a
geometric random variable with parameter ρ = 0.001. Change propagates from the first sensor to the second
with the geometric parameter ρ1,2 = 0.1. The pre- and post-change densities are CN (0, 1) and CN (1, 1),
respectively so that D(f1, f0) = 0.50. While the threshold for νA is set as in Prop. 1.3, the thresholds for
the single sensor and mismatched tests are set as in [171]. The recursion for the sufficient statistic of the
mismatched test follows the description in Veeravalli [181]. Figure 10.2 depicts the performance of the three
tests obtained via Monte Carlo methods and shows that νA can result in an improvement of at least 4 units
of delay at even marginally large PFA values on the order of 10−3.
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Figure 10.3: Probability of false alarm vs. Average detection delay for a typical L = 5 setting.

The second example corresponds to a five sensor system where ρ = 0.005. Change propagates across
the array according to the following model: ρ1,2 = 0.1, ρ2,3 = 0.2, ρ3,4 = 0.5 and ρ4,5 = 0.7. The pre-
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and the post-change densities are CN (0, 1) and CN (0.75, 1) so that D(f1, f0) ≈ 0.2813. With D(f1, f0)
and the change parameters as above, Theorem 1.3 assures us that at least L = 2 sensors contribute to the
ADD vs. PFA slope asymptotically. On the other hand, Figure 10.3 shows that more than two sensors
indeed contribute to the slope. Thus, it can be seen that Theorem 1.3 provides only a sufficient condition on
performance bounds. It is also worth noting the transition in slope (unlike the case in Veeravalli [181]) for
both the mismatched test and νA as PFA decreases from moderately large values to zero, whereas the slope
of the single sensor test (as expected) remains constant.
Numerical Study II – Performance Gap Between the Tests: We now present a second case-study with
the main goal being the understanding of the relative performance of νA with respect to the single sensor
and the mismatched tests. We again consider a L = 2 sensor system and we vary the change process
parameters, ρ and ρ1,2, in this study. The pre- and the post-change densities are CN (0, 1) and CN (1.2, 1)
so that D(f1, f0) = 0.72.
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Figure 10.4: Probability of false alarm vs. Average detection delay for a L = 2 setting with different model
parameters.

Figure 10.4 and Figure 10.5(b) show the performance of the three tests with varying ρ parameters for
a fixed choice of ρ1,2. We observe that the gap in performance between the single sensor test and νA in-
creases as ρ decreases, whereas the gap between νA and the mismatched test stays fairly constant. Similarly,
Figure 10.5 shows the performance of the three tests with varying ρ1,2 parameters for a fixed choice of ρ.
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We observe from these plots that the gap between the mismatched test and νA increases as ρ1,2 decreases,
whereas the gap between the single sensor test and νA increases as ρ1,2 increases.

The choice of D(f1, f0) = 0.72 is such that the sufficient condition in Theorem 1.3 are satisfied, inde-
pendent of the change parameters. Hence, we expect the slope of the ADD vs. PFA plot to be of the form

1
2D(f1,f0)+| log(1−ρ)| asymptotically as PFA→ 0. Nevertheless, Figure 10.5(c) and (d) show that, when both
ρ and ρ1,2 are small, the slope of νA is only as good as (or slightly better than) the single sensor test, which is
known to have a slope of the form 1

D(f1,f0)+| log(1−ρ)| . Thus, we see that even though our theory guarantees
that both the sensors’ observations contribute in the eventual performance of νA asymptotically, we may not
see this behavior for reasonable choices of PFA such as 10−4. The case of observation models not meeting
the conditions of Theorem 1.3 is expected to show this trend for even lower PFA values.

To summarize these observations, if ADDνA , ADDMM and ADDSS denote the average detection delays
for νA, mismatched and single sensor tests (respectively) for some fixed choice of PFA, then

ADDMM − ADDνA ∝ 1

ρ1,2
and independent of ρ

ADDSS − ADDνA ∝ ρ1,2

ρ
.

It is interesting to note from the above equations that ρ1,2 impacts the gap between the two tests in a
contrasting way. The test νA is expected to result in significant performance improvement in the regime
where ρ is small, but ρ1,2 is neither too small nor too large. In fact, this regime where νA is expected
to result in significant performance improvement is the precise regime that is of importance in practical
contexts. This is so because we can expect the occurrence of disruption (e.g., cracks in bridges, intrusions in
networks, onset of epidemics, etc.) to be a rare phenomenon. Once the disruption occurs, we expect change
to propagate across the sensor array fairly quickly due to the geographical (network proximity in the case of
computer networks) proximity of the other sensors, but not so quick that the extreme case of instantaneous
propagation is applicable. Classifying the regime of {ρ`−1,`} and D(f1, f0) where significant performance
improvement is possible with νA is ongoing work. It is also of interest to come up with better test structures
in the regime where νA does not lead to a significant performance improvement.

1.6. Concluding Remarks

We considered the centralized, Bayesian version of the change process detection problem in this work and
posed it in the classical dynamic programming framework. This formulation of the change detection prob-
lem allows us to establish the sufficient statistics for the DP under study and a recursion for the sufficient
statistics. While we obtain the broad structure of the optimal stopping rule (τopt), any further insights into it
are rendered infeasible by the complicated nature of the infinite-horizon cost-to-go function. Nevertheless,
τopt reduces to a threshold rule (denoted in this work as νA) in the rare disruption regime.

The test νA possesses the following properties and thus serves as an attractive test for practical applica-
tions that can be modeled with a change process: i) it is of low-complexity; ii) under certain mild sufficient
conditions (more specifically, if the K-L divergence D(f1, f0) is more than a number determined by the
parameters of the change process), it is asymptotically optimal in the small PFA regime; and iii) numerical
studies suggest that it can lead to substantially improved performance over naive tests. Nevertheless, the
asymptotic expansion of ADD in terms of log(PFA) is not enough to determine how small the false alarm
probability should be in order for this expansion and asymptotic optimality of νA to hold. Studies indicate
that PFA should be chosen significantly smaller than those needed for good approximations in the simpler
quickest detection problems solved earlier by the same approach.
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Figure 10.5: Probability of false alarm vs. Average detection delay for a L = 2 setting with different model
parameters.

2. Data-Efficient Quickest Change Detection with On-Off Observation Control

2.1. Introduction

In the Bayesian quickest change detection problem proposed by Shiryaev Shiryaev [147], there is a sequence
of random variables, {Xn}, whose distribution changes at a random time Γ. It is assumed that before Γ,
{Xn} are independent and identically distributed (i.i.d.) with density f0, and after Γ they are i.i.d. with
density f1. The distribution of Γ is assumed to be known and modeled as a geometric random variable with
parameter ρ. The objective is to find a stopping time τ , at which time the change is declared, such that the
average detection delay is minimized subject to a constraint on the probability of false alarm.

In this paper we extend Shiryaev’s formulation by explicitly accounting for the cost of the observations
used in the detection process. We capture the observation penalty (cost) through the average number of
observations used before the change point Γ, and allow for a dynamic control policy that determines whether
or not a given observation is taken. The objective is to choose the observation control policy along with the
stopping time τ , so that the average detection delay is minimized subject to constraints on the probability of
false alarm and the observation cost.
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2.2. Problem Formulation and the Two-threshold Algorithm

As in the model for the classical Bayesian quickest change detection problem described in Section 2.1, we
have a sequence of random variables {Xn}, which are i.i.d. with density f0 before the random change point
Γ, and i.i.d. with density f1 after Γ. The change point Γ is modeled as geometric with parameter ρ, i.e., for
0 < ρ < 1, 0 ≤ π0 < 1,

πk = P{Γ = k} = π0 11{k=0} + (1− π0)ρ(1− ρ)k−1 11{k≥1},

where 11 is the indicator function, and π0 represents the probability of the change having happened before
the observations are taken. Typically π0 is set to 0.

In order to minimize the average number of observations used before Γ, at each time instant, a decision
is made on whether to use the observation in the next time step, based on all the available information.
Let Sk ∈ {0, 1}, with Sk = 1 if it is been decided to take the observation at time k, i.e. Xk is available
for decision making, and Sk = 0 otherwise. Thus, Sk is an on-off (binary) control input based on the
information available up to time k − 1, i.e.,

Sk = µk−1(Ik−1), k = 1, 2, . . .

with µ denoting the control law and I defined as:

Ik =
[
S1, . . . , Sk, X

(S1)
1 , . . . , X

(Sk)
k

]
.

Here, X(Si)
i represents Xi if Si = 1, otherwise Xi is absent from the information vector Ik. The choice of

S1 is based on the prior π0.
As in the classical change detection problem, the end goal is to choose a stopping time on the observation

sequence at which time the change is declared. Denoting the stopping time by τ , we can define the average
detection delay (ADD) as

ADD = E
[
(τ − Γ)+

]
.

Further, we can define the probability of false alarm (PFA) as

PFA = P(τ < Γ).

The new performance metric for our problem is the average number of observations (ANO) used before Γ
in detecting the change:

ANO = E

min{τ,(Γ−1)}∑
k=1

Sk

 .
Let γ = {τ, µ0, . . . , µτ−1} represent a policy for cost-efficient quickest change detection. We wish to

solve the following optimization problem:

minimize
γ

ADD(γ),

subject to PFA(γ) ≤ α, and ANO(γ) ≤ β, (10.7)

where α and β are given constraints. Towards solving (10.7), we consider a Lagrangian relaxation of this
problem which can be approached using dynamic programming.

The Lagrangian relaxation of the optimization problem in (10.7) is,

R(γ) = min
γ

ADD(γ) + λf PFA(γ) + λe ANO(γ), (10.8)

where λf and λe are Lagrange multipliers. It is easy to see that if λf and λe can be found such that the
solution to (10.8) achieves the PFA and ANO constraints with equality, then the solution to (10.8) is also the
solution to (10.7).
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The problem in (10.8) can be converted to an appropriate Markov control problem using steps similar to
those followed in [131].

Let Θk denote the state of the system at time k. After the stopping time τ it is assumed that the system
enters a terminal state T and stays there. For k < τ , we have Θk = 0 for k < Γ, and Θk = 1 otherwise.
Then we can write

ADD = E

[
τ−1∑
k=0

11{Θk=1}

]
and PFA = E[11{Θτ=0}].

Furthermore, let Dk denote the stopping decision variable at time k, i.e., Dk = 0 if k < τ and Dk = 1
otherwise. Then the optimization problem in (10.8) can be written as a minimization of an additive cost over
time:

R(γ) = min
γ

E

[
τ∑
k=0

gk(Θk, Dk, Sk)

]
with

gk(θ, d, s) = 11{θ 6=T }
[
11{θ=1}11{d=0} + λf 11{θ=0}11{d=1} +λe 11{θ=0}11{s=1}11{d=0}

]
.

Using standard arguments [21] it can be seen that this optimization problem can be solved using infinite
horizon dynamic programming with sufficient statistic (belief state) given by:

pk = P{Θk = 1 | Ik} = P{Γ ≤ k | Ik}.

Using Bayes’ rule, pk can be shown to satisfy the recursion

pk+1 =

{
Φ(0)(pk) if Sk+1 = 0

Φ(1)(Xk+1, pk) if Sk+1 = 1

where
Φ(0)(pk) = pk + (1− pk)ρ (10.9)

and

Φ(1)(Xk+1, pk) =
Φ(0)(pk)L(Xk+1)

Φ(0)(pk)L(Xk+1) + (1− Φ(0)(pk))
(10.10)

with L(Xk+1) = f1(Xk+1)/f0(Xk+1) being the likelihood ratio, and p0 = π0. Note that the structure of
recursion for pk is independent of time k.

The optimal policy for the problem given in (10.8) can be obtained from the solution to the Bellman
equation:

J(pk) = min
dk,sk+1

λf (1−pk)11{dk=1}+11{dk=0}
[
pk +B0(pk)11{sk+1=0} + (λe(1− pk) +B1(pk))11{sk+1=1}

]
(10.11)

with
B0(pk) = J(Φ(0)(pk))

and
B1(pk) = E[J(Φ(1)(Xk+1, pk))].

It can be shown by an induction argument (see, e.g., [131]) that J , B0 and B1 are all non-negative concave
functions on the interval [0, 1], and that J(1) = B0(1) = B1(1) = 0. Also, by Jensen’s inequality

B1(p) ≤ J(E[Φ(1)(X, p)]) = B0(p), p ∈ [0, 1].

Let
d(pk) = B0(pk)−B1(pk).
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Then, from the above properties of J ,B0 andB1, it is easy to show that the optimal policy γ∗ = (τ∗, µ∗0, µ
∗
1, . . . , µ

∗
τ−1)

for the problem given in (10.8) has the following structure:

S∗k+1 = µ∗k(pk) =

{
0 if d(pk) < λe(1− pk)
1 if d(pk) ≥ λe(1− pk)

τ∗ = inf {k ≥ 1 : pk > A∗} .
(10.12)

Remark 2.1. Since, d(pk) ≥ 0 ∀pk, the algorithm in (10.12) reduces to the classical Shiryaev test when
λe = 0 [147].

The optimal stopping rule τ∗ is similar to the one of the Shiryaev problem. But, the observation control
is not explicit and one has to evaluate the differential cost function d(pk) at pk at each time step to decide
on the choice of Sk+1. However, numerical studies of the Bellman equation in (10.11) shows that, for most
choices of ρ, f0 and f1, that we have tried, the optimal algorithm in (10.12) has the following two-threshold
structure.

Start with p0 = 0 and use the following control, with B < A, for k ≥ 0:

Sk+1 = µk(pk) =

{
0 if pk < B

1 if pk ≥ B
τ = inf {k ≥ 1 : pk > A} .

(10.13)

The probability pk is updated using (10.9) and (10.10).

From a practical point of view, even if a two-threshold policy (10.13) is not optimal, one would like to
use the algorithm for the following reasons. First, the choice of thresholds uniquely determine the probability
of false alarm and the average number of observations used before change in γ(A,B). Second, apart from
being simple, the two-threshold policy (10.13) is asymptotically optimal. In Section 2.3, we provide an
asymptotic analysis of γ(A,B), and use the analytical results to show in Section 2.9.1 that γ(A,B) is
asymptotically optimal in the following sense. If

∆(α, β) = {γ : PFA(γ) ≤ α; ANO(γ) ≤ β},

then for a fixed β and ρ,

ADD(γ(A(α, β), B(α, β))) =

[
inf

γ∈∆(α,β)
ADD(γ)

]
(1 + o(1)) as α→ 0.

Here, g(x) = o(1) as x → x0 is used to denote that g(x) → 0 in the specified limit. Also for each β,
B(α, β) is the smallest B such that ANO(γ(A,B(α, β))) ≤ β as A → 1, and A(α, β) is such that, for a
fixed β, PFA(γ(A(α, β), B(α, β))) ≤ α as α→ 0. The reason the result is true is because the best possible
asymptotic delay for the class of algorithms ∆(α, β) is the delay of the Shiryaev test and we show in Section
2.6 that the asymptotic delay of γ(A,B), for a fixed β and ρ, converges to the Shiryaev delay as α→ 0.

While the asymptotic optimality ensures good performance of γ(A,B) for low values of PFA, it is
important to know for moderate PFA values, how well γ(A,B) performs as compared to the optimal solution
of (10.7). In Section 2.9.2, we obtain ANO-ADD trade-off curves for γ(A,B), and show that it is possible
to achieve ANO values as low as 30% of E[Γ] by incurring a delay penalty of less than 10% (Figure 10.7),
and without affecting the PFA values. Thus, the only case where any other control policy can significantly
outperform γ(A,B) is when the PFA constraint is moderate and the ANO constraint is small.

Finally, since γ(A,B) uses the state of the system for observation control, we will show in Section 2.9.3
that this results in a significant amount of reduction in the observation cost as compared to the scheme where
the observations are skipped randomly.
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In Section 2.8, we will provide a set of approximations using which the asymptotic expressions for
the two-threshold algorithm γ(A,B) can be computed. This can be used to choose the thresholds of the
algorithms that satisfy a given set of constraints α and β. We summarize the results and comment on future
work in Section 2.10.

2.3. Asymptotic Analysis of γ(A,B)

In this section we derive asymptotic approximations for ADD, PFA and ANO for the two-threshold policy
γ(A,B). To that end, we first convert the recursion for pk (see (10.9) and (10.10)) to a form that is amenable
to asymptotic analysis.

Define, Zk = log pk
1−pk for k ≥ 0. This new variable Zk has a one-to-one mapping with pk. By defining

a = log
A

1−A, b = log
B

1−B ,

we can write the recursions (10.9) and (10.10) in terms of Zk.
For k ≥ 1,

Zk+1 = Zk + logL(Xk+1) + | log(1− ρ)|+ log
(
1 + ρ e−Zk

)
, if Zk ∈ [b, a) (10.14)

and
Zk+1 = Zk + | log(1− ρ)|+ log

(
1 + ρ e−Zk

)
, if Zk /∈ [b, a) (10.15)

with
Z1 = log

(
eZ0 + ρ

)
+ | log(1− ρ)|+ log (L(X1)) 11{Z0∈[b,a)}.

Here we have used the fact that Sk+1 = 1 if pk ∈ [B,A), and Sk+1 = 0 otherwise (see (10.12)). The
crossing of thresholds A and B by pk is equivalent to the crossing of thresholds a and b by Zk. Thus the
stopping time for γ(A,B) (equivalently γ(a, b) with some abuse of notation) is

τ = inf {k ≥ 1 : Zk > a} .

In this section we study the asymptotic behavior of γ(a, b) in terms of Zk, under various limits of a, b
and ρ. Specifically, we provide two asymptotic expressions for ADD, one for fixed thresholds a, b, as ρ→ 0,
and another for fixed b and ρ, as a→∞. We also provide, as a→∞ and ρ→ 0, an asymptotic expression
for PFA for fixed b. Finally, we also provide asymptotic estimates of the average number of observations
used before (ANO) and after the change point Γ. Note that the limit of a → ∞ corresponds to PFA going
to zero.

Figure 10.6 shows a typical evolution of γ(a, b), i.e., of Zk using (10.14) and (10.15), starting at time
0. Note that for Zk ∈ [b, a), recursion (10.14) is employed, while outside that interval, recursion (10.15),
which only uses the prior ρ, is employed. As a result Zk increases monotonically outside [b, a).

From Figure 10.6 again, each time Zk crosses b from below, it can either increase to a (point τ ), or it
can go below b and approach bmonotonically from below, at which time it faces a similar set of alternatives.
Thus the passage to threshold a possibly involves multiple cycles of the evolution of Zk below b. We will
show in Section 2.6 that after the change point Γ, following a finite number of cycles below b, Zk grows up
to cross a, and the time spent on the cycles below b is insignificant as compared to τ − Γ, as a → ∞. In
fact we show that, asymptotically, the time to reach a is equal to the time taken by the classical Shiryaev
algorithm to reach a. (Note that for the classical Shiryaev algorithm the evolution of Zk would be based on
(10.14)).

When Zk crosses a from below, it does so with an overshoot. Overshoots play a significant role in the
performance of many sequential algorithms (see [153], [171]) and they are central to the performance of
γ(a, b) as well. In Section 2.5, we show that PFA depends on the threshold a and the overshoot (Zτ − a) as
a→∞, but is not a function of the threshold b.
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Figure 10.6: Evolution of Zk for f0 ∼ N (0, 1), f1 ∼ N (0.5, 1), and ρ = 0.01, with thresholds a = 3.89,
and b = −1.38, corresponding to the pk thresholds A = 0.98 and B = 0.2, respectively. Also Z0 = b.

The number of observations taken during the detection process is the total time spent by Zk between
b and a. As a → ∞, Zk crosses a only after change point Γ, with high probability. The total number of
observations taken can thus be divided in to two parts: the part taken before Γ (ANO), which is the fraction
of time Zk is above b (and hence depends only on b), and the part consumed after Γ. In Section 2.7 we show
that, asymptotically, the average number of observations used after Γ is approximately equal to the delay
itself.

In Section 2.8 we provide approximations using which the asymptotic expressions can be computed
and provide numerical results to demonstrate that under various scenarios, for limiting as well as moderate
values of a, b, and ρ, our asymptotic expressions for ADD, PFA and ANO provide good approximations. In
Section 2.9 we use the asymptotic expressions for ADD, PFA and ANO to show some optimality properties
of γ(a, b).

We begin our analysis by first obtaining the asymptotic overshoot distribution for (Zτ − a) using non-
linear renewal theory [153, 186]. As mentioned above, this will be critical to the PFA analysis.

In what follows, we use E` and P` to denote, respectively, the expectation and probability measure
when change happens at time `. We use E∞ and P∞ to denote, respectively, the expectation and probability
measure when the entire sequence {Xn} is i.i.d. with density f0. Also recall that, g(x) = o(1) as x → x0

is used to denote that g(x)→ 0 in the specified limit.

2.4. Asymptotic Overshoot

In this section we characterize the overshoot distribution of Zk as it crosses a as a → ∞. In analyzing the
trajectory of Zk, it useful to allow for arbitrary starting point Z0 (shifting the time axis). We first combine
the recursions in (10.14) and (10.15) to get:

Zk+1 = Zk + 11{Zk≥b} logL(Xk+1) + | log(1− ρ)|+ log
(
1 + e−Zkρ

)
.

By defining Yk = logL(Xk) + | log(1− ρ)| and expanding the above recursion, we can write an expression
for Zn:

Zn =
n∑
k=1

Yk + log
(
eZ0 + ρ

)
+
n−1∑
k=1

log
(
1 + e−Zkρ

)
−

n∑
k=1

11{Zk<b} logL(Xk)

=
n∑
k=1

Yk + ηn. (10.16)
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Here ηn is used to represent all terms other than the first in the equation above:

ηn = log
(
eZ0 + ρ

)
+
n−1∑
k=1

log
(
1 + e−Zkρ

)
−

n∑
k=1

11{Zk<b} logL(Xk). (10.17)

As defined in [153], ηn is a slowly changing sequence if

n−1 max{|η1|, . . . , |ηn|} n→∞−−−→
i.p.

0, (10.18)

and for every ε > 0, there exists n∗ and δ > 0 such that for all n ≥ n∗

P{ max
1≤k≤nδ

|ηn+k − ηn| > ε} < ε. (10.19)

If indeed {ηn} is a slowly changing sequence, then the distribution of Zτ − a, as a → ∞, is equal to the
asymptotic distribution of the overshoot when the random walk

∑n
k=1 Yk crosses a large positive boundary.

We have the following result.

Theorem 2.1. Let R(x) be the asymptotic distribution of the overshoot when the random walk
∑n

k=1 Yk
crosses a large positive boundary under P1. Then for fixed ρ and b, under P1, we have the following:

1. {ηn} is a slowly changing sequence.

2. R(x) is the distribution of Zτ − a as a→∞, i.e.,

lim
a→∞

P1 [Zτ − a ≤ x|τ ≥ Γ] = R(x). (10.20)

2.5. PFA Analysis

We first obtain an expression for PFA as a function of the overshoot when Zk crosses a.

Lemma 2.1. For fixed ρ and b,

PFA = E[1− pτ ] = e−aE[e−(Zτ−a)|τ ≥ Γ](1 + o(1)) as a →∞.

From Lemma 2.1, it is evident that PFA depends on the overshoot when Zk crosses a as a→∞. Since
the overshoot has an asymptotic distribution (Theorem 2.1) that depends only on densities f0, f1 and prior
ρ, and is independent of b, it is natural to expect that as a → ∞, PFA is completely characterized by the
asymptotic distribution R(x) and is not a function of the threshold b. This is indeed true and is established
in the following theorem.

Theorem 2.2. For a fixed b and ρ,

PFA(γ(a, b)) =

(
e−a

∫ ∞
0

e−xdR(x)

)
(1 + o(1)) as a→∞. (10.21)

2.6. Delay Analysis

The PFA for γ(a, b) have the following bound:

PFA = E[1− pτ ] ≤ 1−A =
1

1 + ea
≤ e−a. (10.22)

Using this upper bound we can show that the ADD of γ(a, b) is given by:

ADD = E
[
(τ − Γ)+

]
= E[τ − Γ|τ ≥ Γ](1 + o(1)) as a→∞. (10.23)
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In the following we provide two different expressions for E[τ − Γ|τ ≥ Γ]. The first one is obtained by
keeping b fixed and taking ρ → 0. This expression will be used to get accurate delay estimates for γ(a, b)
in Section 2.8

Next, we will provide another asymptotic expression for E[τ −Γ|τ ≥ Γ] for a fixed b, ρ and as a→∞.
We show that in this limit, E[τ − Γ|τ ≥ Γ] converges to the Shiryaev delay. This fact will be used to prove
the asymptotic optimality of γ(a, b) in Section 2.9.

It was discussed in reference to Figure 10.6 that each time Zk crosses b from below, it faces two alter-
natives, to cross a without ever coming back to b or to go below b and cross it again from below. It was
mentioned that the passage to the threshold a is through multiple such cycles. Motivated by this we define
the following stopping times λ and Λ:

λ
∆
= inf{k ≥ 1 : Zk /∈ [b, a), Z0 = b}, (10.24)

and
Λ

∆
= inf{k ≥ 1 : Zk > a or ∃ k s.t. Zk−1 < b and Zk ≥ b , Z0 = b}. (10.25)

Let t(x, y) be the constant time taken by Zk to move from Z0 = x to y using the recursion (10.15), i.e.

t(x, y)
∆
= inf{k ≥ 0 : Zk > y,Z0 = x, x, y /∈ [b, a)}. (10.26)

Then, we can write Λ as a function of λ using (10.26):

Λ = (λ+ t(Zλ, b))11{Zλ<b} + λ 11{Zλ>a} = λ+ t(Zλ, b)11{Zλ<b}.

The significance of these stopping times is as follows. If we start the process at Z0 = b and reset Zk to b
each time it crosses b from below, then the time taken by Zk to move from b to a is the sum of a finite but
random number of random variables with distribution of Λ, say Λ1,Λ2, . . . ,ΛN . For i = 1, . . . , N − 1,
ZΛi < b, and ZΛN > a. Thus the time to reach a in this case is E1

[∑N
k=1 Λk

]
. Let

ADDs ∆
= E1

[
N∑
k=1

Λk

]
.

The behavior of the delay path depends on ZΓ, the value of Zk at the change point Γ, and how Zk
evolves after that point. We use {Zk ↗ b} to indicate that Zk approaches b from below for some k > Γ, i.e.
∃k > Γ, s.t., Zk−1 < b,Zk ≥ b. and use {Zk ↗ a} to represent the event that Zk crossed a without ever
coming back to b, i.e., Zk ≥ b,∀k > Γ. We define the following three disjoint events:

A = {ZΓ < b},
B = {ZΓ ≥ b;Zk ↗ b},
C = {ZΓ ≥ b;Zk ↗ a}.

Thus, under the event A, the process Zk starts below b at Γ, and reaches a after multiple up-crossings of
the threshold b. Under the event B, the process Zk starts above b at Γ, and crosses b before a. It then has
multiple up-crossings of b, similar to the case of event A. Under event C, the process Zk starts above b at Γ,
and reaches a without ever coming below b.

Also define,
λ(x) = inf{k ≥ 1 : Zk /∈ [b, a), Z0 = x, b ≤ x < a}, (10.27)

and let Λ(x) be defined with Z0 = x similar to (10.25). Thus, λ and λ(b) have the same distribution.
Similarly, Λ and Λ(b) are identically distributed.

The following theorem gives an asymptotic expression for the conditional delay.
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Theorem 2.3. For a fixed values of the thresholds a, b, the conditional delay is given by

E[τ − Γ|τ ≥ Γ] =

[
ADDs P(A ∪ B|τ ≥ Γ)

+ E[Λ(ZΓ)|C, τ ≥ Γ] P(C|τ ≥ Γ)

+ E[t(ZΓ, b)|A, τ ≥ Γ] P(A|τ ≥ Γ)

+ E[Λ(ZΓ)|B, τ ≥ Γ] P(B|τ ≥ Γ)

](
1 + o(1)

)
as ρ→ 0. (10.28)

In Section 2.8 we will provide approximations for various terms in (10.28) to get an accurate estimate
of ADD. In Lemma 2.2 we provide expressions for ADDs.

Let Ψ represent the Shiryaev recursion, i.e., updating Zk using only (10.14). Define

ν(x, y) = inf {k ≥ 1 : Ψ(Zk−1) > y, Z0 = x} . (10.29)

Thus, ν(x, y) is the time for the Shiryaev test to reach y starting at x. Also, define the stopping times:

νb = ν(b, a), (10.30)

and
ν0 = ν(−∞, a). (10.31)

Note that, ν0 is the stopping time for the classical Shiryaev test [147] and νb is its modified form which starts
at b. We have the following asymptotic expression.

Lemma 2.2. For a fixed b and ρ, ADDs, the average time for Zk to cross a starting at b, under P1, with Zk
reset to b each time it crosses b from below, is given by

ADDs =
E1[λ] + E1[t(Zλ, b)|{Zλ < b}]P1(Zλ < b)

P1(Zλ > a)
, (10.32)

and is asymptotically equal to the time taken by the Shiryaev algorithm to move from b to a, i.e.,

ADDs = E1[νb](1 + o(1)) as a→∞. (10.33)

Note that Theorem 2.3 takes ρ→ 0. We now provide another expression for E[τ −Γ|τ ≥ Γ], for a fixed
b and ρ as a→∞, which will be used to prove the asymptotic optimality of γ(a, b) in Section 2.9.

Theorem 2.4. For a fixed b and ρ, we have as a→∞

E[τ − Γ|τ ≥ Γ] ≤ ADDs (1 + o(1)) , (10.34)

and hence, we have

E[τ − Γ|τ ≥ Γ] =

[
a

D(f1, f0) + | log(1− ρ)|

] (
1 + o(1)

)
as a→∞, (10.35)

where, D(f1, f0) is the K-L divergence between f0 and f1.
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2.7. Computation of ANO

First note that,

ANO = E

min{τ,Γ−1}∑
k=1

Sk


= E

[
Γ−1∑
k=1

Sk

∣∣∣∣τ ≥ Γ

]
P(τ ≥ Γ) + E

[
τ∑
k=1

Sk

∣∣∣∣τ < Γ

]
P(τ < Γ)

= E

[
τ∑
k=1

Sk

∣∣∣∣τ ≥ Γ

]
(1 + o(1)) as a→∞.

The last equality follows because
∑Γ−1

k=1 Sk ≤ Γ on {τ < Γ}, and P(τ < Γ) < e−a → 0 as a→∞.
Following (10.24), we define

λ̂ = inf{k ≥ 1 : Zk < b,Z0 = b, a =∞}. (10.36)

The theorem below an gives asymptotic expression for ANO.

Theorem 2.5. For fixed b, we have as a→∞, and as ρ→ 0,

ANO =
E∞[λ̂]

P∞[Γ ≤ λ̂+ t(Zλ̂, b)]

1

1 + eb
(1 + o(1)),

where, λ̂ is as defined in (10.36).

Proof. Let t(b) be the first time Zk crossed b from below, i.e., t(b) = t(z0, b). Using the fact that observa-
tions are used only after t(b), we can write the following:

ANO=E

[
Γ−1∑
k=1

Sk

∣∣∣∣τ ≥ Γ

]

=E

 Γ−1∑
k=t(b)

Sk

∣∣∣∣Γ > t(b), τ ≥ Γ

P(Γ > t(b)|τ ≥ Γ). (10.37)

We now compute each of the two terms in (10.37). For the first term in (10.37), we have the following
lemma.

Lemma 2.3. For a fixed b, as a→∞, ρ→ 0,

E

 Γ−1∑
k=t(b)

Sk

∣∣∣∣Γ > t(b), τ ≥ Γ

 =
E∞[λ̂]

P∞[Γ ≤ λ̂+ t(Zλ̂, b)]
(1 + o(1)).

For the second term in (10.37), we show that P(Γ > t(b)|τ ≥ Γ) is equal to 1
1+eb

in the limit and is
independent of z0.

Lemma 2.4.
P(Γ > t(b)|τ ≥ Γ) =

1

1 + eb
+ o(1) as a→∞, ρ→ 0.

The Lemmas 2.3 and 2.4 taken together completes the proof of Theorem 2.5.
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Define,

ANO1 = E

[
τ∑

k=Γ

Sk

∣∣∣∣τ ≥ Γ

]
.

Thus, ANO1 is the average number of observations used after the change point Γ. In some applications
it might be of interest to have an estimate of ANO1 as well. The following theorem shows that ANO1 is
approximately equal to the delay itself.

Theorem 2.6. For fixed b and ρ, we have

ANO1 = E1[νb](1 + o(1)), as a→∞.

2.8. Approximations and Numerical Results

In Sections 2.5-2.7, we have obtained asymptotic expressions for ADD, PFA, and ANO as a function of the
system parameters: the thresholds a, b, the densities f0 and f1, and the prior ρ. In this section we provide
approximations for various analytical expressions obtained in these sections. The observations used are
Gaussian with f0 ∼ N (0, 1), and f1 ∼ N (θ, 1), θ > 0, for the simulations and analysis. In the simulations,
the PFA values are computed using the expression E[1−pτ ]. This guarantees a faster convergence for small
values of PFA.

2.8.1. Numerical results for PFA

By Theorem 2.2, we have the following approximation for PFA:

PFA ≈ e−a
∫ ∞

0
e−xdR(x).

We note that
∫∞

0 e−xdR(x) and r̄ can be computed numerically, at least for Gaussian observations [153].
In this section we provide numerical results to show the accuracy of the above expression for PFA.

In Table 10.1 we compare the analytical approximation with the PFA obtained using simulations of
γ(a, b) for various choices of ρ, thresholds a, b, and post change mean θ. From the table we see that the
analytical approximation is quite good.

Table 10.1: PFA: for f0 ∼ N (0, 1), f1 ∼ N (θ, 1)
PFA PFA

θ ρ a b Simulations Analysis

0.4 0.01 3.0 0 3.78×10−2 3.94×10−2

0.4 0.01 6.0 2.0 1.955×10−3 1.96×10−3

0.75 0.01 9.0 -2.0 7.968×10−5 7.964×10−5

2.0 0.01 5.0 -4.0 2.15×10−3 2.155×10−3

0.75 0.005 7.6 3.0 3.231×10−4 3.235×10−4

0.75 0.1 4.0 -3.0 1.143×10−2 1.157×10−2

In Table 10.2, we show that PFA is not a function of b for large values of a. We fix a = 4.6, and increase
b from -2.2 to 0.85. We notice that PFA is unchanged in simulations when b is changed this way. This is
also captured by the analysis and it is quite accurate.

2.8.2. Approximations and Numerical Results for ANO and ANO1

We recall the expressions for ANO from Theorem 2.5 and for ANO1 from Theorem 2.6:

ANO ≈ E∞[λ̂]

P∞[Γ ≤ λ̂+ t(Zλ̂, b)]

1

1 + eb

ANO1 = E1[νb].
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Table 10.2: PFA for ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)
a b Simulations Analysis

4.6 -2.2 6.44×10−3 6.48×10−3

4.6 -1.5 6.44×10−3 6.48×10−3

4.6 -0.85 6.44×10−3 6.48×10−3

4.6 0 6.44×10−3 6.48×10−3

4.6 0.85 6.44×10−3 6.48×10−3

We first simplify the expression for ANO. Note that

P∞[Γ ≤ λ̂+ t(Zλ̂, b)] = 1− P∞[Γ > λ̂+ t(Zλ̂, b)]

= 1− E∞[(1− ρ)λ̂+t(Zλ̂,b)].

Thus, using Binomial approximation we get

P∞[Γ ≤ λ̂+ t(Zλ̂, b)] ≈ ρ
(

E∞[λ̂] + E∞[t(Zλ̂, b)]
)
.

Thus, we have

ANO ≈ ρ−1 E∞[λ̂]

E∞[λ̂] + E∞[t(Zλ̂, b)]

1

1 + eb
. (10.38)

We now provide approximation to compute E∞[λ̂] and E∞[t(Zλ̂, b)] in (10.38). Invoking Wald’s lemma
[153], we write E∞[λ̂] as,

E∞[λ̂] =
E∞[Zλ̂]− E∞[ηλ̂]

−D(f1, f0) + | log(1− ρ)| .

We have developed the following approximation for E∞[λ̂]:

E∞[λ̂] ≈ r̄ + log(1 + ρe−b)

D(f1, f0)− | log(1− ρ)| . (10.39)

Here, log(1 + ρe−b) is an approximation to E∞[ηλ̂] by ignoring all the random terms after b is factored out
of it. This extra b will cancel with the b in E∞[Zλ̂] = b+ E∞[Zλ̂ − b]. We approximate E∞[b− Zλ̂] by r̄,
the mean overshoot of the random walk

∑k
i=1 Yk, with mean D(f1, f0) − | log(1 − ρ)|, when it crosses a

large boundary (see (10.16)). For the term E∞[t(Zλ̂, b)], we have obtained the following approximation:

E∞[t(Zλ̂, b)] ≈
∫ ∞

0

log(1 + eb)− log(1 + eb−x)

| log(1− ρ)| dR(x). (10.40)

Thus, we approximate the distribution of (b− Zλ̂) by R(x).
Based on the second order approximation for E1[ν0] developed in [171], we have obtained the following

approximation for E1[νb]:

E1[νb] =
a− E[η(b)] + r̄

D(f1, f0) + | log(1− ρ)| + o(1) as a→∞, (10.41)

where, η(b) is the a.s. limit of the slowly changing sequence ηn with Z0 = b under f1, (see (10.17))and

r̄ =

∫ ∞
0

xdR(x), (10.42)

with R(x) as in Theorem 2.1.
In Table 10.3 we demonstrate the accuracy of approximations for ANO and ANO1, for various values

of ρ, thresholds a, b, and post change mean θ. The table shows that the approximations are quite accurate
for the parameters chosen.
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Table 10.3: f0 ∼ N (0, 1), f1 ∼ N (θ, 1)
ANO ANO1

θ ρ a b Simulations Analysis Simulations Analysis

0.4 0.01 8.5 -2.2 66.3 62.88 102.9 111.7
0.75 0.01 6.467 -2.2 34.92 34.24 27.86 29.46
2.0 0.01 7.5 -4.0 42.94 46.4 6.08 6.23
0.75 0.005 8.7 -3.0 77.18 75.09 38.73 40.38
0.75 0.1 8.5 0.0 2.64 3.2 21.17 22.18

2.8.3. Approximations and Numerical Results for ADD

Theorem 2.4 gave a first order approximation for E[τ − Γ|τ ≥ Γ]:

E[τ − Γ|τ ≥ Γ] ≈
[

a

D(f1, f0) + | log(1− ρ)|

]
.

Note that, from [171], this is also the first order approximation for ADD of the Shiryaev algorithm, and
gives a good estimate of the delay when PFA is small. For the Shiryaev delay, a second order approximation
was developed in [171] (also see (10.41)):

E1[ν0] =

[
a− E[η(−∞)] + r̄

D(f1, f0) + | log(1− ρ)|

]
+ o(1) as a→∞.

So, instead of using a
D(f1,f0)+| log(1−ρ)| , we propose to use the following:

E[τ − Γ|τ ≥ Γ] ≈
[

a− E[η(−∞)] + r̄

D(f1, f0) + | log(1− ρ)|

]
. (10.43)

For the Shiryaev algorithm, (10.43) provides a very good estimate of the delay even for moderate values
of PFA. In case of γ(a, b), the accuracy of (10.43) depends on the choice of b and hence on the constraint β,
as having b > −∞ increases the delay. Before we demonstrate this by numerical and simulation results we
introduce the following concept:

ANO% = ANO expressed as a percentage of E[Γ]. (10.44)

For example, if ρ = 0.05, and for some choice of system parameters ANO = 15, then ANO% = 15∗0.05 =
75%. Thus, the concept of ANO% captures the reduction in the average number of observations used before
change by employing γ(a, b).

In Table 10.4 we provide various numerical examples where (10.43) is a good approximation for E[τ −
Γ|τ ≥ Γ]. Since, (10.43) is a good approximation for the Shiryaev delay as well, it follows that, for these
parameter values, the delay of γ(a, b) is approximately equal to the Shiryaev delay. It might be intuitive
that if we are aiming for large ANO% values of say 90%, then the delay will be close to the Shiryaev delay.
But values in Table 10.4 shows that it is possible to achieve considerably smaller values of ANO% without
significantly affecting the delay.

However, if the ANO% value is small, then this means that the value of b is large, and this implies that
the delay is large. In this case, it might happen that (10.43) is a good approximation only for values of PFA
which are very small. This is demonstrated in Table 10.5. It is clear from the table that, for the parameter
values considered, estimating the delay with less than 10% error is only possible at PFA values of the order
of PFA ≈ 10−22.

This motivates the need for a more accurate estimate of the delay. This is provided below.
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Table 10.4: f0 ∼ N (0, 1), f1 ∼ N (θ, 1)
ADD PFA ANO%

θ ρ a b Simulations Analysis Simulations Analysis
E[τ − Γ|τ ≥ Γ] (10.43)

0.4 0.01 8.5 -2.2 104.9 111.7 1.608×10−4 1.608×10−4 66%
0.75 0.01 6.467 -2.2 32.3 29.5 1.002×10−3 1.004×10−3 35%
2.0 0.01 7.5 -4.0 6.1 6.23 1.77×10−4 1.768×10−4 43%
0.75 0.005 8.7 -3.0 42.6 40.4 1.076×10−4 1.076×10−4 77%
0.75 0.1 8.5 0.0 23.9 22.18 1.286×10−4 1.285×10−4 26%

Table 10.5: ρ = 0.05, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)
Simulations Analysis

a b E[τ − Γ|τ ≥ Γ] (10.43) ANO% PFA
5.0 1.0 30 13 7.5% 4.3× 10−3

9.0 1.0 42 25 7.5% 7.9× 10−5

13.0 1.0 54 37 7.5% 1.4× 10−6

18.0 1.0 69 52 7.5% 9.7× 10−9

50.0 1.0 165 149 7.5% 1.23× 10−22

From Theorem 2.3, recall that we had the following three events:

A = {ZΓ < b},
B = {ZΓ ≥ b;Zk ↗ b},
C = {ZΓ ≥ b;Zk ↗ a}.

As a first step towards the approximations, we ignore the event B: P(B) ≈ 0. That is, we assume that if
ZΓ > b, then Zk climbs to a. Define,

Pb = P(ZΓ ≥ b|τ ≥ Γ).

Then (10.28),

E[τ − Γ|τ ≥ Γ] ≈ Pb E[λ(ZΓ)|C, τ ≥ Γ] + (1− Pb)(E[t(ZΓ, b)|A, τ ≥ Γ] + ADDs). (10.45)

From Lemma 2.2, it is easy to show the following:

ADDs = E1[λ|{Zλ > a}] + (E1[λ|{Zλ < b}] + E1[t(Zλ, b)|{Zλ < b}]) P1(Zλ < b)

1− P1(Zλ < b)
.

We now use the following approximations:

E1[λ|{Zλ > a}] ≈ E[λ(ZΓ)|C, τ ≥ Γ] ≈ a− E[η(−∞)] + r̄

D(f1, f0) + | log(1− ρ)| ,

E1[λ|{Zλ < b}] ≈ r̄ + log(1 + ρe−b)

D(f1, f0)− | log(1− ρ)| ,

E1[t(Zλ, b)|{Zλ < b}] ≈ t(b− r̄, b) ≈ log(1 + eb)− log(1 + eb−r̄)

| log(1− ρ)| .

To compute (10.45), we also need approximations for P1(Zλ < b), Pb and E[t(ZΓ, b)|A]. Those are pro-
vided below. Setting a =∞ we have, by Wald’s likelihood identity, Proposition 2.24, Pg 13, [153],

P1(Zλ < b) = E∞

[
f1(X1) . . . f1(Xλ)

f0(X1) . . . f0(Xλ)

]
.
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Under P∞, λ a.s. ends in b and with high probability it takes very small values. Hence, this expressions can
be computed using Monte Carlo simulations. Further,

Pb = P(Γ > t(−∞, b))P(ZΓ > b|Γ > t(−∞, b), τ ≥ Γ)

≈ 1

1 + eb
E∞[λ̂]

E∞[λ̂] + E∞[t(Zλ̂, b)]
.

We already have the approximations for E∞[λ̂] and E∞[t(Zλ̂, b)] from Section 2.8.2. The approximation
for E[t(ZΓ, b)|A] can be obtained as follows (all expectations conditioned on {τ ≥ Γ}):

(1− Pb)E[t(ZΓ, b)|A] = (1− Pb)E[t(ZΓ, b)|{ZΓ < b}]
= E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ > t(−∞, b)}]P({Γ > t(−∞, b)} ∩ {ZΓ < b})

+E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ ≤ t(−∞, b)}]P({Γ ≤ t(−∞, b)} ∩ {ZΓ < b}).

This can be computed using

P({Γ > t(−∞, b)} ∩ {ZΓ < b}) ≈ 1

1 + eb
E∞[t(Zλ̂, b)]

E∞[λ̂] + E∞[t(Zλ̂, b)]
,

and

P({Γ ≤ t(−∞, b)} ∩ {ZΓ < b}) = P({Γ ≤ t(−∞, b)}) ≈ eb

1 + eb
.

To compute conditional expectation of t(ZΓ, b), we need to subtract from t(x, b), the mean of Γ conditioned
on {Γ ≤ t(x, b)}. Specifically,

E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ > t(−∞, b)}] = t(b− r̄, b)− 1

P(Γ ≤ t(b− r̄, b))

t(b−r̄,b)∑
k=1

k(1− ρ)k−1ρ,

and,

E[t(ZΓ, b)|{ZΓ < b} ∩ {Γ ≤ t(−∞, b)}] = t(−∞, b)− 1

P(Γ ≤ t(−∞, b))

t(−∞,b)∑
k=1

k(1− ρ)k−1ρ.

Thus we have obtained approximations for all the terms for the new approximation for E[τ − Γ|τ ≥ Γ] in
(10.45).

In Table 10.6, we now reproduce Table 10.5 with a new column containing delay estimates computed
using the new ADD (for E[τ − Γ|τ ≥ Γ]) approximation (10.45). The values shows that all estimates are
nearly within 10% of the actual value.

In Table 10.7, we show the accuracy of the new ADD approximation (10.45), for various values of
the system parameters, by comparing it with simulations and also with (10.43). We also set PFA around
1 × 10−3. The table clearly demonstrates that the new ADD approximation predicts ADD with less than
10% error.

2.9. Asymptotic Optimality and Performance of γ(a, b)

2.9.1. Asymptotic Optimality of γ(a, b)

In Theorem 2.4 we saw that for a fixed b and ρ,

E[τ − Γ|τ ≥ Γ] =

[
a

D(f1, f0) + | log(1− ρ)|

] (
1 + o(1)

)
as a→∞.

We recall that from Tartakovsky and Veeravalli [171], this is also the asymptotic delay of the Shiryaev
algorithm.
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Table 10.6: ρ = 0.05, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)
Simulations Analysis New Analysis

a b E[τ − Γ|τ ≥ Γ] (10.43) ADD from (10.45) ANO% PFA
5.0 1.0 30 13 34 7.5% 4.3× 10−3

9.0 1.0 42 25 46 7.5% 7.9× 10−5

13.0 1.0 54 37 58 7.5% 1.4× 10−6

18.0 1.0 69 52 73 7.5% 9.7× 10−9

50.0 1.0 165 149 169 7.5% 1.23× 10−22

Table 10.7: f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), PFA ≈ 10−3, ANO=10% of Shiryaev ANO
ADD

ρ a b Simulations Analysis Analysis
New (10.45) (10.43) ANO%

0.01 6.4 2.7 250 260 14.42 0.33%
0.005 6.45 0.6 181 190 22.09 1.5%
0.001 6.47 -2.7 75 80 33.68 7.6%
0.0005 6.47 -3.49 74 79 36.49 8.4%
0.0001 6.47 -5.2 76 80 42.56 9.6%

Moreover, from Theorem 2.2, the PFA for γ(a, b) is

PFA =

(
e−a

∫ ∞
0

e−xdR(x)

)
(1 + o(1)) as a→∞.

Again from Tartakovsky and Veeravalli [171], this is the PFA for the Shiryaev algorithm. We thus have the
following asymptotic optimality result for γ(a, b).

Theorem 2.7. With γ = {τ, S1, . . . , Sτ} define

∆(α, β) = {γ : PFA(γ) ≤ α; ANO(γ) ≤ β},

then for a fixed β and ρ,

ADD(γ(a(α, β), b(α, β))) =

[
inf

γ∈∆(α,β)
ADD(γ)

]
(1 + o(1)) as α→ 0. (10.46)

Here, for each α, β, b(α, β) is the smallest b such that ANO(γ(a(α, β), b(α, β))) ≤ β as a→∞.

Proof. Fix b such that ANO(γ(a, b)) ≤ β as a → ∞. It may happen that the constraint β is not met with
equality. Thus choose the smallest b which satisfies the constraint β as a → ∞. This choice of threshold b
is unique for a given β because ANO is not a function of threshold a as a→∞.

As a → ∞, the PFA and ADD both approach the Shiryaev PFA (10.21) and Shiryaev delay (10.35),
respectively. Thus, as a → ∞, γ(a, b) is optimal over the class of all control policies ∆(α, β) that satisfy
the constraints α and β.

Remark 2.2. If we select b1 such that ANO% < 1% as a→∞, and then select a1 such that ADD(γ(b1, a1))
is within 1% of a

D(f1,f0)+| log(1−ρ)| . Then for all thresholds d ≥ a1, γ(d, b1) has ANO% < 1% and delay
within 1% of the Shiryaev delay. Thus, for small values of PFA, as long as we are aiming for ANO% of
1-100, no other control policy can outperform the two-threshold policy γ(a, b).
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2.9.2. Trade-off Curves: Performance of γ(a, b) for a Fixed and Moderate α

Theorem 2.7 shows that for small values of PFA, γ(a, b) is approximately optimal, i.e., it is not possible to
outperform γ(a, b) by a huge margin. But for moderate values of PFA, it is not clear if their exists algorithms
which can significantly outperform γ(a, b). Our aim is to partially address this issue in this section.

In Figure 10.7 we plot the ANO-ADD trade-off for the two-threshold algorithm. Specifically, we com-
pare the two-threshold algorithm with the classical Shiryaev test and study how much ANO can be reduced
without significantly loosing in terms of ADD. For Figure 10.7 we pick four values of ρ : 0.05, 0.01, 0.005, 0.001.
For a fixed ρ, we fix b = −∞ and select threshold a such that the PFA(γ(a, b)) = 10−4. We then increase
the threshold b to have ANO% values of 75%, 50%, 30%, 15%. We note that it was possible to reduce the
ANO to 15% of E[Γ] by increasing the threshold b this way, without affecting the probability of false alarm.
Figure 10.7 shows that we can reduce ANO by up to 25% while getting approximately the same ADD per-
formance as that of the Shiryaev test. Moreover, if we allow for a 10% increase in ADD compared to that
of the Shiryaev test, then we can reduce ANO by up to 70% (see plot for ANO% =30%).

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
15
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f0=N(0,1), f1=N(1,1), PFA=10
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|log(l)|

Figure 10.7: Trade-off curves comparing performance of two-threshold algorithm with the Shiryaev test for
ANO% of 75, 50, 30 and 15%. f0 ∼ N (0, 1), f1 ∼ N (1, 1), and PFA = 10−4.

Such a behavior was also observed in Table 10.4, where we saw that the delay for γ(a, b) is approxi-
mately equal to the Shiryaev delay for moderate to large ANO% values. Thus, for moderate PFA values,
when the ANO% is moderate to large, γ(a, b) is approximately optimal.

2.9.3. Comparison with Fractional Sampling

In this section we compare the performance of γ(a, b) with the naive approach of fractional sampling, in
which an ANO% of ε is achieved by employing Shiryaev algorithm and using a sample with probability ε.
Figure 10.8 compares the two schemes for ANO% of 25%. We also plot the performance of the Shiryaev
algorithm for the same values of PFA and ρ. The figures clearly show that γ(a, b) helps in reducing the
observation cost by a significant margin as compared to the fractional sampling scheme.

2.10. Conclusions

We posed a data-efficient version of the classical Bayesian quickest change detection problem, where we
control the number of observations taken before the change occurs. We obtained a two-threshold Bayesian
test that is asymptotically optimal, has good trade-off curves and is easy to design. We supported our claim
via analytical and simulation results. We derived analytical approximations for the ADD, PFA and ANO
performance of the two-threshold policy using which we can design the test by choosing the thresholds.
Further, there is a unique pair of thresholds that meets a given set of constraints of probability of false alarm
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Figure 10.8: Trade-off curves comparing performance of the two-threshold algorithm with the Fractional
Sampling Scheme for ANO% 25%. f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), and PFA = 10−3.

and observation cost. This result has implications in many engineering applications where an abrupt change
has to be detected in a process under observation, but there is a cost associated with acquiring the data
needed to make accurate decisions.

In the absence of knowledge of the prior on Γ, an important problem for future research is to see if two-
threshold policies are optimal in non-Bayesian (e.g., minimax) settings. More importantly, it is of interest
to understand how to update the test metric in a non-Bayesian setting when we skip an observation. From
an application point of view, one can design a two-threshold test based on the Shiryaev-Roberts or CUSUM
approaches Tartakovsky and Moustakides [167], and use the undershoot of the metric when it goes below
the threshold ‘b’, to design the off times. Furthermore, if we are able to find useful lower bounds on delay
for given false alarm and ANO constraints, we may be able to use these to prove asymptotic optimality of
such heuristic tests, as is done for the standard quickest change detection problem Tartakovsky and Veer-
avalli [171], Lai [82]. Also, such lower bounds can possibly help in obtaining insights for cases where the
observations are not i.i.d. Tartakovsky and Veeravalli [171], Lai [82]. Other interesting problems in this area
include the design of data-efficient optimal algorithms for robust change detection or nonparametric change
detection.
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Chapter 11

Spectral and Measurement Approaches in
Information Assurance

This chapter summarizes the work done by the group of Christos Papadopoulos in the area of Spectral
Analysis Applications in Network Security. The work includes three fronts. First, applications for a low
rate detection algorithm [14]. Second, a study to correlate address characteristics of spammers and non-
spammers to determine if spammers have different characteristics and are therefore easier to detect [183].
We present highlights of this work below. Finally, work to detect bots with custom TCP/IP stacks, based on
the existence of multiple fingerprints [44]. Due to space restrictions we do not present this work here.

1. Using Low-Rate Flow Periodicities in Anomaly Detection

As desktops and servers become more complicated, they employ an increasing amount of automatic, non-
user initiated communication. Such communication can be good (OS updates, RSS feed readers, and mail
polling), bad (keyloggers, spyware, and botnet command-and-control), or ugly (adware or unauthorized
peer-to-peer applications). Communication in these applications is often periodic but infrequent, perhaps
every few minutes to few hours. This infrequent communication and the complexity of today’s systems
makes these applications difficult for users to detect and diagnose. We show that there are several classes
of applications that show low-rate periodicity and demonstrate that they are widely deployed on public net-
works. In this paper we present a new approach to identify changes in low-rate periodic network traffic. We
employ signal-processing techniques, using discrete wavelets implemented as a fully decomposed, iterated
filter bank. This approach allows us to cover a large range of low-rate periodicities, from seconds to hours,
and to identify approximate times when traffic changed. Network administrators and users can use our tech-
niques for network- or self-surveillance. To measure the effectiveness of our approach, we show that it can
detect changes in periodic behavior caused by events such as installation of keyloggers, an interruption in
OS update checks, or the P2P application BitTorrent. We quantify the sensitivity of our approach, showing
that we can find periodic traffic when it is at least 5–10% of overall traffic.

1.1. Methodology

We use wavelets implemented as an iterated filter bank to identify periods of time when a periodic series of
connections is present. In this section we discuss how we go from network events to identifying a change in
periodic communication.

Although wavelets provide a well developed mathematical theory, and there has been some work ap-
plying wavelets to network traffic before, discovering infrequent periodic traffic is particularly demanding
because of the long-timescales and sparse signals involved. Here we describe the four main parts of our
approach (roughly following the outline of applying signal processing to networking [178]): extracting a
timeseries of events from network traffic, decomposing the timeseries using an iterated filter bank, visualiz-
ing the resulting multi-resolution representation, and detecting the presence of a periodic signal. Our focus
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on long-timescales influences each of these steps.
For a complete description of the work please see the paper. here we summarize the results in the

following tables.

Table 11.1: Variety of applications that show periodic behavior
Category Examples Seen? Period
User services WeatherEye yes 30-120
RSS News Feeds NewzCrawler yes 15-120
Web Counters Google Analytics yes 5-30
P2P Protocols Gnutella yes 2-120
Adware Gator, ISTbar yes 15-60
Spyware/Keyloggers SpyBuddy no N/A
Botnet cmd&ctl (non-commercial) no N/A

Table 11.1 outlines seven categories of applications which we have researched and identified as par-
ticipating in periodic communication. We have found numerous examples of applications in five of these
seven categories in our four-day trace from USC. However, example applications don’t characterize how
widespread hosts exhibiting applications with periodic behavior are.

Table 11.2: Prevalence of malware with periodic behavior on our network.
Blacklisted Unique IPs

Group Destinations (users)
active to anywhere – – 128,614 [100%]
active to blacklisted 181 (100%) – –

Non-periodic 120 (66%) n/a n/a
Periodic 61 (44%) n/a n/a

User Services 5 (3%) 22 [0%]
Web Counters 15 (8%) 16,405 [13%]
Ad Servers 36 (20%) 31,277 [24%]
Other 5 (3%) 6 [0%]

Table 11.2 shows the results of our analysis. We found traffic to 181 of the blacklisted destinations from
our campus. About 45,000 IP addresses at USC had traffic to some of these sites, nearly one-third of all
active campus addresses. (The presence of dynamic addresses means that this count may not correspond
exactly to 45,000 users, since one user may occupy multiple addresses, and vice versa.)

For the 61 blacklisted hosts that had periodic traffic, we manually examined the site and classified it in
one of four categories (user services, web counters, ad servers, and other)

1.2. Summary

In this work we have shown that low-rate periodicity is common to several broad classes, both good (OS
updates), bad (keyloggers and malware), and ugly (adware), and that these applications are widely deployed
on public networks. We have explored a wavelet-based approach to identify such periodic behavior, and
begun to explore the sensitivity and robustness of this approach. A promising application of such analysis
is self-surveillance, as a user watches his or her own traffic to detect unexpected changes.

1.3. Applications of Low Rate Detection

In the previous section we investigated the underlying fundamentals of detection of low-rate periodic behav-
ior and evidence that periodic behavior occurs. In this section we look at two applications, self-surveillance
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and network surveillance, and then demonstrate that a variety of applications show low-rate periodicity and
those applications occur in real networks.

1.3.1. Self-surveillance: Identifying Changes in Periodic Behavior of a Host

Earlier we demonstrated that malware shows periodic behavior that can be identified, even in the face of
noise. Now we show how to identify dynamic changes in periodic behavior, and the time when these
changes occur.

We wish to identify changes in the periodic behavior of a given host to help users better understand
activities on their computer. All operating systems and an increasing number of applications automatically
poll for updates periodically. In addition, spyware and adware often report back to or request new informa-
tion from the external master. In fact, application updates sometimes do not reveal the presence of automatic
polling, or how much information they disclose. Moreover, malware may terminate automatic updates after
infecting a host. Thus, users will want to know when automatic checks stop, or the addition of an automatic
reporting service to their machines.

We consider two examples where the change in periodic behavior is of interest, namely a change in OS
update checks and a change in communication patterns created by the installation of a keylogger.

Detecting operating system updates. Security policies of all operating systems and many applications
include automatic polling for updates with typical periods ranging from 30 minutes to a week. Just as
network administrators wish to detect the presence of bad behavior, the absence of good behavior may also
be of great interest. In addition, since automatic updates are often disclosed only in the fine print of an end-
user license agreement, users may also wish to know when a newly installed application performs regular
update checks.

To confirm we can see a change in update checks we monitored a lab machine running the Fedora 10 dis-
tribution of Linux for three days. By default, Fedora polls update servers every hour using yum-updatesd.
During the second day of the experiment, we disabled update checks at 2pm. The machine was lightly used
for web browsing and e-mail over the three day period.

Our system correctly identifies periodic behavior near 3600s in this test traffic. Our algorithm to place
events in time finds a change in this periodic behavior between noon and 9pm, consistent with our known
time of 2pm. We have not tuned our algorithm for temporal placement; a more sophisticated approach would
most likely narrow this window, although precision is ultimately limited by the 1-hour period.

To understand how our system can automatically identify absence of OS checks, Figure 11.1 shows
traffic periodicity with and without OS update checks. At the 16th level of decomposition of Figure 11.1(b)
we see OS update polling appear as energy at the base period of one hour (3600s, two adjacent 3% bins), and
as harmonics at half, three fourths and one and a half times the frequency (6553s, 4% energy, 4800s, 4% and
2400s, 3% energy). Disabling updates, by contrast, shows no energy below the 14th level of decomposition
(Figure 11.1(c)).

Our algorithms detect periodicity automatically with an adaptive threshold. Figure 11.1(a) shows the
numeric comparison corresponding to the whole 72 hour observation. As we can see, each of the periodici-
ties that are visible in Figure 11.1(b) are above the detection threshold in Figure 11.1(a). More importantly,
because detection is numeric, it can be automated and more sensitive and consistent than human interpreta-
tion.

This example demonstrates that our method successfully identifies a periodic behavior, and can also
identify when that behavior starts and stops. While in some cases system administrators may be able to
directly monitor OS update polling if they have administrative access to the machines in question, we suggest
our approach could be useful when only network access is possible or desirable, for example, due to privacy
reasons. In addition, monitoring periodic checks is robust to a potentially changing set of servers hosting
OS updates.
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(a) Automatic detection of OS updates: energy vs. detection
threshold, all 72 hours.

(b) Traffic with automatic polling for OS updates. (c) Traffic without automatic update polling.

Figure 11.1: Visualization illustrating periodic behavior before and after removal of OS update checks.

1.3.2. Detecting a Keylogging Application

OS updates are an example of desirable periodic behavior. We next look at an example of a periodic behavior
which is undesirable, namely a keylogger. Many keyloggers report on user activity at specified intervals, to
inform their masters what they have learned and that they are still operational—we confirmed
supervisor-configured reporting intervals in both SpyBuddy and Keyboard Guardian.

Experiment: install laptop w. Keyboard Guardian. To investigate if we can detect keylogger reporting
we installed Keyboard Guardian on a dedicated Windows computer. We monitored all TCP flows from the
test machine for a three day period while using the test machine for occasional e-mail and web browsing.

On the second day of the experiment, we installed Keyboard Guardian at 4pm, and configured Keyboard
Guardian to email reports every three hours. Our computer use compared to keylogger reporting resulted to
an SNR of 0.1. Figures showing these results are omitted here due to space, but are available in our technical
report [14].

We ran our system on trace files collected from the test machine, which correctly identified not only the
periodic behavior but also the frequency of the reporting period (10,800s, 92µHz). Additionally, the system
identified the presence of the signal between 12pm and 9pm on the second day of our experiment, correctly
bracketing the 4pm installation time.

This experiment shows we can detect low rate but regular traffic as well as changes in periodic commu-
nication associated with a known spyware tool. We anticipate that this approach could be used by a network
administrator to monitor a large number of user machines, searching for malicious activity. Although cen-
tralized companies could do such monitoring more easily by modifying software individual machines, some
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companies (for example, Google) and most ISPs do not have this ability. While such network monitoring
is possible today with centrally maintained blacklists, our approach detects behavioral changes that would
apply to malware before the control site is blacklisted. After detection, network administrators could take
action to further investigate, perhaps notifying the machine’s owner or subjecting that host to more invasive
monitoring or quarantine.

2. Correlating Spam Activity with IP Address Characteristics

It is well known that spam bots mostly utilize compromised machines with certain address characteristics,
such as dynamically allocated addresses, machines in specific geographic areas and IP ranges from AS’
with more tolerant spam policies. Such machines tend to be less diligently administered and may exhibit
less stability, more volatility, and shorter uptimes. However, few studies have attempted to quantify how
such spam bot address characteristics compare with non-spamming hosts. Quantifying these characteristics
may help provide important information for comprehensive spam mitigation.

In this work, we use two large datasets, namely a commercial blacklist and an Internet-wide address
visibility study to quantify address characteristics of spam and non-spam networks. We find that spam
networks exhibit significantly less availability and uptime, and higher volatility than non-spam networks. In
addition, we conduct a collateral damage study of a common practice where an ISP blocks the entire /24
prefix if spammers are detected in that range. We find that such a policy blacklists a significant portion of
legitimate mail servers belonging to the same prefix.

For brevity, we present only the results of the last part of our work in this report. Our full results can be
found in the paper that appeared in Global Internet 2010.

2.1. Collateral Damage

Our prior work has shown that both address and hostname characteristics confirm that spam originates
from dynamic addresses. We use these results to consider a new question: Is blacklisting an entire /24
prefix based on the presence of one or more spamming hosts an effective policy? While many blacklists
enumerate individual IP addresses, blocking entire /24 prefixes are also common. We are concerned about
reducing spamming, but also about the blocking of legitimate outgoing email. We define collateral damage
as the number of legitimate mail servers which would be incorrectly filtered when an entire /24 prefix is
blacklisted. First we identify all survey prefixes which have spamming hosts. If these prefixes also contain
non-spamming hosts, then they are subject to collateral damage. Figure 11.2 compares the number of
spammers versus non-spammers in the set of intersected prefixes.

Except for outliers, the graph shows that many of the prefixes seem to cluster along the left-axis (grey)
or the top diagonal (black). The diagonal is present because the sum of spammers and non-spammers is
never more than the size of a prefix (255). The left-axis cluster shows prefixes with a reasonably uniform
number of non-spammers and a small number of spammers. The diagonal cluster shows a large number of
spammers residing in highly populated prefixes. These clusters may reflect two different situations. The
diagonal cluster shows heavily compromised prefixes, which we believe may have negligent administration
or a collaborating provider. The other cluster represents a limited number of compromised hosts in an
otherwise normal prefix, we believe these may be caused by bots. The latter are prone to collateral damage,
since they contain a high number of non-spamming hosts and a low number of spamming hosts.

Anti-spammers typically assume there is no collateral damage in blacklisting a /24 prefix, because many
ISPs forward legitimate mail through the ISPs mail server, rather than allowing hosts to send mail directly.
We are only able to quantify whether a blacklisted prefix contains mail sources, by studying their hostnames
and DNS mail forwarding records. For this study we extract the reverse hostname and MX record for each
address in the prefix, using the Linux host and dig commands. Finally we intersect the mail server IP
addresses against the survey dataset to see if any reside in the blacklisted prefixes. Table 11.3 shows the
progression of our data analysis.

We start with 646,040 addresses that reside in the 4,126 spamming prefixes in our intersection set. We
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Figure 11.2: Number of Spammers versus Non-Spammers

Table 11.3: Collateral Damage Study

DESCRIPTION DOMAINS HOSTS PREFIXES

INTERSECTED PREFIXES 646,040 4,126
DOMAIN QUERY TIMEOUT 12,899
DOMAIN QUERY INVALID 175,535
DOMAIN QUERY VALID 457,606

UNIQUE DOMAIN NAMES 4,044
NUMBER MAIL SERVERS 6,718
UNIQUE MAIL SERVERS 3,872 2,154
COLLATERAL DAMAGE 1,377 365

subtract addresses that timeout or fail to return a valid domain name. From the remainder, our programs
identify a set of unique domain names, and the addresses of the corresponding mail servers. Intersecting
these addresses with our spamming prefixes, we find collateral damage of 1,377 mail servers and 365 pre-
fixes, which is ∼8.8% of all spamming prefixes. We conclude that prefix blocking incurs a high rate of
collateral damage, suggesting the need for finer-grain filtering.
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Chapter 12

Application of Quickest Changepoint
Detection to Information Assurance and
Cybersecurity

This chapter is intended to assess the progress made in applied changepoint detection. Specifically, we
considered two major areas of application: information assurance and cybersecurity. The work in both was
a joint effort of Dr. Tartakovsky (University of Southern California, Department of Mathematics), Dr. Pa-
padopoulos (Colorado State University, Department of Computer Science) and Dr. Heidemann (University
of Southern California, Department of Computer Science and Information Sciences Institute).

1. Introduction

One of the important applications that stimulated the research in this project related to development of ef-
ficient distributed changepoint detection methods is intrusion detection in distributed high-speed computer
networks. A significant number of serious cyberattacks on a variety of governmental agencies, universi-
ties, and corporations have been identified [78]. These attacks, including a variety of buffer overflows,
worm-based, denial-of-service (DoS) and man-in-the-middle (MiM) attacks, are designed to gain access to
additional hosts, steal sensitive data, and disrupt network services. As a result, rapid detection of a wide
spectrum of network intrusions and robust separation of legitimate and malicious traffic are vital for the
continuation of normal operation of military, federal, industrial, and enterprise networks.

There is a wide variety of intrusion detection methods proposed in the literature [43]. There are two
broad IDS categories: (a) signature based and (b) anomaly based [43, 78]. The main problem with signature
IDSs is that the signatures must be defined a priori; thus, this technique is ineffective against new attacks.
In anomaly-based detection, the IDS is first trained to recognize “normal” traffic patterns and then classifies
deviations as attacks. The problems with this approach are a high rate of false positives, the cost of training
and re-training, and susceptibility to carefully crafted attacks that “train” themselves into normal traffic.

Typically network intrusions occur at unknown points in time and lead to changes in the statistical prop-
erties of certain observables. For example, distributed DoS (DDoS) attacks lead to changes in the mean
value of the number of packets of a particular type (TCP, ICMP, or UDP) and size. It is therefore intuitively
appealing to formulate the problem of detecting attacks as a quickest changepoint detection problem: to de-
tect changes in statistical models as rapidly as possible (i.e., with minimal average delays) while maintaining
the false alarm rate at a given low level.

In this project, we developed not only an efficient anomaly IDS based on changepoint methods, but also
a hybrid anomaly-signature IDS which allows for filtering of false positives and confirmation of real attacks.
Thus, this novel hybrid approach allows us to overcome common drawbacks of both anomaly and signature
methods when applied separately.
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2. The Hybrid Anomaly–Signature Intrusion Detection System

2.1. The Idea and Structure of the System

In this project, we proposed a novel hybrid approach to network intrusion detection which is particularly
efficient for capturing DDOS attacks. The hybrid anomaly–signature Intrusion Detection System (IDS) im-
plements the change detection algorithm (anomaly IDS) and the spectral-based signature IDS in parallel. In
other words, the methodology is based on using the changepoint detection method for preliminary detection
of attacks, and discrete Fourier transform to reveal periodic patterns in network traffic which can be used to
confirm the presence of attacks and reject false detections triggered by the anomaly IDS. It is worth men-
tioning that in network security applications it is of utmost importance to detect very rapidly attacks that
may occur in a distant future (using a repeated application of the same anomaly-based detection algorithm),
in which case the true detection of a real change may be preceded by a long interval with frequent false
alarms that should be filtered (rejected) by a separate algorithm, which may be built based on signatures
(e.g., spectral signatures). At the second stage, we propose to exploit a spectral-based IDS.

The architecture of an automated two-stage (cascade) hybrid anomaly–signature IDS is shown schemati-
cally in Figure 12.1. The IDS utilizes changepoint detection for preliminary intrusion detection, and discrete
Fourier transform to confirm true and reject false intrusions. Such a hybrid approach simultaneously speeds
up detection and lowers the frequency of false alarms.

Figure 12.1: The hybrid intrusion detection system.

To illustrate how the hybrid IDS works, consider detecting a DoS attack. A DoS attack is a malicious
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attempt to disrupt (ideally – completely knock off) an online service. This can be achieved, e.g., by sending
a large number of packets to the target (victim) to congest its link. Consequently, once the victim’s link is
overloaded, it starts to clock attack packets in regular intervals. For example, trying to push through more
than 10Mbps of traffic out of a 10Mbps link will clock out packets at approximately 800 packets per second,
if the packets are 1500 bytes in size each. This periodicity, though mixed with other non-attack traffic
towards the target’s network, will result in an easily detectable spike in the spectrum at the corresponding
frequency. At the same time, since DoS attacks lead to changes in the statistical properties of traffic date,
changepoint detection can be effectively used to detect these changes. The idea of the hybrid IDS is to
use changepoint detection as an “early warning” system, and once it sounds a alarm, turn on the spectral
analyzer for a more thorough traffic analysis.

(a) No attack (pre-change) (b) Under attack (post-change)

Figure 12.2: Power spectral density.

Figure 12.2 gives an example of implementation of FFT (fast Fourier transform) for a real data set
containing an attack. Note that in the no-attack mode there are no periodic patterns in the traffic distribution,
and hence, there is no peak in the spectrum, while under the attack there is a contrast peak suggesting that
this might indeed be an attack. Namely this phenomenon is used to filter false positives and confirm true
attacks. Separately anomaly- and signature-based IDS’s have pros and cons. Combining them in one unit
allows us to obtain the best possible performance.

In summary, the hybrid anomaly–signature IDS is based on the following principles and has the follow-
ing features:
• Anomaly IDS – Quick Detection with High FAR: In order to detect attacks quickly, detection

threshold in the changepoint detection module are lowered, which leads to frequent false alarms that
should be filtered by a separate algorithm.
• Signature IDS – False Alarm Filtering: To reject false detections a signature-based approach is used

based on a spectral analysis module.
• Changepoint Detection Module for: (a) Quick detection with relatively high FAR, and (b) Trigger-

ing of spectral analysis algorithms.
• Spectral Analysis Module for: (a) False alarm filtering/rejection; and (b) True attack confirmation.

Figure 12.3 illustrates the hybrid anomaly-spectral IDS in action. The first plot shows raw data (packet
rate). The second plot shows the behavior of the CUSUM statistic, which is being restarted from scratch
(repeated) when a threshold exceedance occurs. The third plot shows PSD (power spectral density) at the
output of the spectral analyzer: the peak appears only when the attack starts (which confirms the attack),
while previous threshold exceedances (false alarms) are rejected by the spectral analyzer.
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Figure 12.3: Hybrid IDS in action.

2.2. Detection of DoS Attacks

In this subsection, we illustrate efficiency of the hybrid IDS for detecting UDP Packet Storm Attacks, one
of the common DoS attacks. Specifically, we report and discuss the results obtained from the empirical
performance analysis of the hybrid IDS using a real-life distributed DoS attack, namely, a packet storm attack
on User Datagram Protocol (UDP) port 22. This trace was captured off one of the ServePath1 networks. The
attack starts about 60 seconds into the trace, and consists of very short packets (about 15 bytes in size each)
sent to the victim’s UDP port 22. The rate is about 180Kpps with that of the background traffic being about
53Kpps. Although intensity-wise it is a rather contrast attack, it is quite short in duration – only about 10
seconds long. This poses a challenge for the hybrid system.

Figure 12.4 shows the cumulative packet rate. It is seen that there is a considerable jump in the packet
rate at the time moment the attack begins.
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Figure 12.4: Storm attack on UDP Port 22 (cumulative packet rate).
1See www.servepath.com for more information.
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Figure 12.5 shows the corresponding FFT output. The contrast peak in the middle of the plot suggests
that this might indeed be an attack. It is this phenomenon that we use to filter false positives in the hybrid
system.

We now turn into discussion of how the proposed system can be used to also isolate shorts attacks.
Figure 12.6 illustrates the difference between not using the spectral analyzer and using it to confirm the
attack. From Figure 12.6(a) we see that the first attack is detected while the second one is not. This is
because we did not rely on the spectral analyzer and had to use high detection threshold. Consequently, we
had almost no false alarms but we also failed to detect the second attack. At the same time Figure 12.6(b)
shows the case where we lowered the detection threshold, which increased the level of false alarms, but the
false alarms were successfully filtered by the spectral analyzer. As it can be seen, in this case we detected
and isolated both attacks.

Figure 12.5: Spectral density for the UDP attack.
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Figure 12.6: UDP attack double peak detection.
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3. Application to Spam Detection: Fighting Spam at the Network Level

Spam is a well-known problem, and the need for an efficient way to shield against spam is evident. As
an anti-spam solution, most organizations run some version of spam filters at their local networks (e.g.,
Bayesian filters or some sort of block lists). These techniques work quite well, but they are typically expen-
sive both in initial and operational costs. Block lists rely on information that was gathered ahead of time, and
thus might be stale. Bayesian approaches, while generally good, are not infallible and require examination
of all message content.

The idea of our approach is to monitor traffic at the network level. This has several advantages: it
requires no message content examination and thus guards privacy; spammers can be detected almost in-
stantly based on their network behavior; collateral damage is reduced because dynamic addresses released
by spammers can be removed from block lists quickly; and IP addresses can be blocked before connections
are accepted, saving resources at the mail server.

What features are useful for detecting spammers? Prior work has shown that the Autonomous System
the IP address belongs to, the message size, the number of blocked connections and the message length
are important features. All of them can be determined from network traffic. We investigated such features
and used changepoint detection to detect when traffic patterns from a particular host match known spammer
patterns. Examples include the following:

1. Message size. Most spam campaigns attempt to deliver either identically the same or similar (content-
wise) message to many recipients. As a result, with the exception of the receiver’s IP address, the size
of the message does not vary significantly. Thus, detecting hosts that send email blocks of a similar
size is one feature to look for. False positives (e.g., from mailing lists) can be eliminated by looking
at other features such as past history and the presence of MX records associated with that IP address.

2. Dropped connections. If a mail server uses a block list to refuse connections from suspected spam-
mers, these will be detected in network traces. Keeping track of such events can help detect spammers
for everyone. Changepoint detection can be used to detect a change in the number of dropped con-
nections from a particular IP address.

3. Connection patterns. So as to lower the probability of being detected, spammers typically send very
few emails to a particular domain. With network monitoring, however, which can monitor many
domains at once, this particular pattern can be detected. Changepoint detection can be used to detect
a spammer touching many different domains.

We analyzed a number of network traces containing spam-related activity in order to better understand
the signature message size pattern (data mining) to subsequently use in a changepoint based detector to
defeat spam. Figure 12.7 summarizes our findings.

Specifically, Figure 12.7 shows the evolution of the email size in time (for real-world data). The main
observation is that the email size, though has occasional spikes, most of the time is flat. A host having such
a pattern is a potential spammer. We equipped a changepoint based detector with the ability to check for
such patterns to confirm that a certain host is a spammer. We tested the whole system using an example with
a real-world spammer. The whole process is shown in Figure 12.8. Specifically, under surveillance is the
email (SMTP) traffic generated by a certain host. Ordinarily, the SMTP traffic produced by a user sending
legitimate messages is characterized by a relatively steady intensity, i.e., the number of messages sent per
unit time remains more or less constant, with no major bursts or drops. However, the behavior changes
completely once a spam attack is initiated: the number of messages sent off explodes, possibly for a very
short period of time. The topmost plot in Figure 12.8 illustrates just this. The spike in the traffic intensity
that appears in the far right of the plot can be detected by methods of statistical changepoint detection. We
considered two most popular detection procedures – the CUSUM and Shiryaev–Roberts procedures. The
middle and bottom plots in Figure 12.8 show the detection process for each of the two procedures. Either
procedure momentarily rises an alarm as soon as the traffic intensity blunder caused by the spam attack is
encountered.
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Figure 12.7: The message size pattern of a typical spammer.
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Figure 12.8: Detection of a spammer.

At the point the alarm is sounded, the system checks the message size pattern, and based on the fact that
the message size is fairly stable (standard deviation is very small) concludes that this is a legitimate alarm.

4. Application to Repulse Unauthorized Break-Ins

Yet another major type of computer security risk is when a system (whether an individual computer, or an
entire network) is broken into by an unauthorized party. An event of this kind, i.e., an unauthorized break-in
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to a system, is associated with gaining access to a machine without permission to subsequently temper with
it. Some of the short-term consequences of a successful unauthorized break-in include:

1. Stealing sensitive data;
2. Turning the machine into a relay to send junk email (spam);
3. Bringing down the entire network just for the fun of it.
Long-term, the consequences may snowball to a matter of national security. The need to device a

defensive mechanism is thus apparent. We proposed an efficient solution against such threats.
To illustrate our approach, consider a hacker seeking to break into a machine. This process may be

described as consisting of two phases. During Phase 1, the hacker launches a dictionary attack (see below)
attempting to guess a valid username-password combination (ideally, the root one), to subsequently use
it to get through to the machine’s shell; in real life, the hacker may obtain a valid username-password
combination via other means, such as through phishing, social engineering, etc. Next, assuming the hacker
was successful in gaining access to the machine’s shell, the break-in process rolls on to Phase 2. During the
latter, successfully logged-in, the hacker proceeds to “playing” with the machine. The specific activities very
from case to case, but common to most is downloading malware onto the machine and opening a backdoor
(e.g., for a possible accessory as well as for later returns). Thus, an unauthorized break-in is a two-phase
process, where each phase is characterized by its own unique features in terms of the traffic patterns it
generates. Therefore, an individual approach to detection of each is required. Both can be designed using
a changepoint detection based anomaly IDS, or using the hybrid anomaly–signature IDS. However, the
problem with simply employing two independent detectors is high level of false positives: it is the level of
the first detector plus that of the second one. To overcome this, observe that the two phases are co-related:
the traffic pattern generated by Phase 1 activities is followed by the pattern generated by Phase 2 activities.
Factoring this correlation in helps reducing the overall frequency of false positives.

We performed a simulation of an unauthorized break-in to evaluate the performance of our approach.
The test-bed was half real traffic, and half simulated. Specifically, we modeled Phase 1 using real-life traces.
However, since a trace of a real attack where a hacker has actually broken into a machine is hard to obtain,
we simulated Phase 2. We now describe each phase separately, beginning with the first one.

4.1. Phase 1: Dictionary Attack

Recall that with a dictionary attack the hacker attempts to guess a correct username-password combination
to break into a server, typically through SSH. While we illustrate the attack with SSH, the attack applies
to any username-password access control method, including web authentication and other similar meth-
ods. To achieve this goal the attacker initiates what is essentially a brute force attack: a rapid sequence of
SSH authorization requests, where each request contains a username-password combination either guessed
based on prior partial information about the real username-password, or trying out common user names and
passwords. The word “dictionary” in this context is used figuratively to illustrate that the attacker has a list
(dictionary) of “suspected” username-password combinations. In a dictionary attack the hacker successively
tries all of them. Figure 12.9 illustrates this kind of an attack schematically.

Consider an example of a real-world SSH dictionary attack. This dataset was provided by a regional ISP.
Figure 12.10(a) shows the intensity of the number of packets passing through the victim server’s link. Notice
that the server remains idle most of the time, occasionally exhibiting interaction with other computers in the
network. Eventually, the server starts to receive suspiciously many SSH requests. Figure 12.10(b) shows the
behavior of the CUSUM detection statistic. The behavior of the latter is very similar to that of the packet
rate. As soon as the server is under attack, the statistic jumps through the detection threshold (red flat line),
and an alarm is raised resulting in successful detection of the attack.

The instantaneous and successful detection described above is not a miracle because the attack is very
contrast. Therefore, it is not a good illustration of the potential of changepoint detection. To make things
more challenging, we intensionally diminished the intensity of the attack. The new dataset is excellent to
demonstrate not only the potential of changepoint detection, but also that of the hybrid system. The spectral
approach is expected to work because, as mentioned earlier, dictionary attacks introduce periodicity in the
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Figure 12.9: Generic dictionary attack scenario.
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Figure 12.10: SSH dictionary attack traffic pattern and its detection.

traffic flow. Figure 12.11 illustrates this for this attack. Specifically, the figure is a magnified version of the
patterns in the attack traffic.

Looking at this figure we see a highly periodic sequence of contrast spikes. If one employs a spectral
analyzer, the spectrum power density will have a high spike. Recall that this is exactly the idea behind
the hybrid system. We now report our results for the new dataset. Figure 12.12 illustrates the detection
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Figure 12.11: SSH dictionary attack signature.

process. The main conclusion is that despite the fact that the intensity of the attack now is far less than
before, changepoint detection reveals it instantaneously anyway.
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Figure 12.12: Diminished SSH dictionary attack traffic pattern and its detection.

The problem though is that if the detection threshold is lowered so as to have an even more quick
detection, it will inevitably result into numerous false alarms. To filter these false alarms, one can employ
FFT to uncover hidden periodicities in the traffic flow caused by the presence of attacks. Figures 12.13(a)
and 12.13(b) show the power spectral density for this dataset before and during the attack. Note the spike in
the PSD under attack. This is exactly because of the aforementioned periodicity.

To conclude we remark that using the anomaly–spectral IDS, one can achieve unprecedented speeds of
detection.
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(a) Before attack. (b) Under attack.

Figure 12.13: Spectral characteristics of the traffic before and during the attack.

4.2. Phase 2: Post Unauthorized Break-In Activity

When trying to detect a compromised machine by looking at network traffic only, challenges are high. Due to
privacy concerns we assume we cannot look inside packets to determine what traffic is malicious. Moreover,
even if we had access to the packet payload, many machines are compromised through applications such
as SSH, which means that the payload is encrypted. We simulate an attack scenario where a hacker breaks
into a machine using a compromised SSH password. Note that this covers successful dictionary attacks
(such as those we see in Phase 1), and stealing username-password information. We assume that the hacker
performs several suspicious activities that normal users are not likely to perform. These include downloading
a malicious binary file and running it, fetching a few more binaries from an external server, creating a
backdoor for future connections into the compromised machine, and uploading a few files to an external
server. We take into account that some of these activities such as access to the backdoor, may happen after
the hacker has logged out.

Although this scenario is generic, it is fully customizable: the hacker activities can be altered, timing
between commands can be changed, and as a result, any scenario we deem plausible can be simulated.
Currently, the simulation consists of the following steps:

1. Create an attack script. This is a set of shell commands representing what the attacker will do once
logged into the machine.

2. Create traffic to the machine. This shell script is run after compromise, and accesses the back door
the original attack script has created.

3. Run a network capture tool on the machine to capture all attack traffic (we use tcpdump).
4. Run the attack scripts.
The above scenario was implemented, resulting in a trace about 38 seconds with about 35K packets.

The target machine’s IP address is 129.82.138.26. The machine is assumed to be running such standard
network services as HTTP, FTP, POP, SMTP, SSH, etc. These services typically run on ports whose number
is less than 1024. Backdoors, however, typically run on higher port numbers. A big challenge is to detect
the correlation between the SSH communications and deviations (which may be very slight) in the number
of traffic packets in and out of the machine. In our scenario, an SSH login is followed by an increase in
the number of incoming or outgoing packets, which is a strong indication of suspect activity by the user
who just logged in. Thus, not only do we want to detect that the behavior of the traffic flow (both incoming
and outgoing) generated by the machine has changed, but also correlate the change and a particular login
through SSH.
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The surveillance begins from the very first SSH packet sent by the hacker in an attempt to log-in to the
machine. Our approach is to treat every connection as suspicious, and create state to monitor all successful
connections. In this simple scenario it takes the hacker about 5 seconds to start “fooling around” with the
machine: 5 seconds after the beginning of the surveillance, the hacker executes a command that causes the
machine to increase its traffic. This increase is readily and successfully detected by the changepoint detection
based anomaly IDS, as seen in Figure 12.14. Note that the scenario involves both in- and out-coming traffic,
which can be used to reduce false positives.
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Figure 12.14: Detection of unauthorized SSH break-in attempt.

5. Conclusion

Rapid intrusion detection in high-speed computer networks with low false alarm rate is a challenge for
military, government and industrial networks. This problem has been addressed by various agencies, uni-
versities, and companies for many years. Still this problem is not solved.

We applied quickest changepoint detection methods for the development of efficient anomaly-based
IDS-s that are capable for detecting attacks in computer networks with small detection delays for a given
(low) false alarm rate. The effectiveness of the proposed changepoint detection based IDS has been verified
by implementation in real-word scenarios for detecting ARP MiM insider attacks and DDoS TCP, ICMP,
and UDP external attacks as well as for detecting spam and unauthorized break-ins. These results prove that
major drawbacks and technological barriers of existing intrusion detection systems can be overcome through
the use of a completely new approach to intrusion detection that relies on advanced changepoint detection
methods. In particular, replacing current ad-hoc deterministic decision rules with advanced changepoint
detection algorithms allows for controlling false alarm rate and detecting unexpected intrusions.

In addition, combining an anomaly IDS and spectral-based signature algorithms with false alarm fil-
tering capability allows one to lower thresholds in the anomaly IDS, which reduces detection delays to a
minimum. Therefore, the proposed approach to rapid intrusion detection integrates best possible anomaly-
based (statistical) solutions with a spectral-based signature IDS in distributed systems. The feasibility of
the proposed hybrid IDS has been proven for detecting DDoS attacks by using LANDER data sets collected
by ISI. We believe that the proposed hybrid anomaly-spectral IDS solves both aspects of the problem – it
simultaneously provides breakthrough in terms of achieving unprecedented speeds of detection (i.e., small
detection delays of true attacks) and a very low false alarm rate.
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Chapter 13

Application of Adaptive Spatiotemporal
Image Processing and Nonlinear Filtering
Methods in Remote Sensing

The work reported in this chapter has been performed mainly by Alexander Tartakovsky. The results related
to NLF-based track-before-detect are joint work with Boris Rozovsky.

1. Introduction

The problem of efficient clutter rejection is a challenge for Space-Based Infrared (SBIRS) and Space Track-
ing and Surveillance System (STSS) sensors with chaotically vibrating lines-of-sight (LOS) that have to
provide early detection and tracking of targets (e.g., missile launches) in the presence of highly-structured
cloud backgrounds. In such systems, the intensities of cluttered backgrounds due to solar scattering by
clouds, aerosols and earth surface (ground, sea, etc.) or by IR airglow emissions are typically dozens and
even hundreds of times greater than either sensor noise or the intensities of the targets that are to be detected
and then tracked. As a result, reliable target detection and subsequent tracking is impossible without clutter
rejection to, or even below, the level of sensor noise.

Most existing clutter rejection technologies for unstabilized or mechanically stabilized platforms rely on
spatial-only or simple image differencing methods. However, the results of our study presented below show
that even the best spatial-only filters are not efficient enough, especially in unfavorable conditions that are
typical for applications of interest. Moreover, these filters cannot be combined with temporal processing in
cases where clutter is non-stationary in time due to platform vibrations (jitter), which is always the case. A
similar conclusion holds for an industry standard differencing method.

In this project, we argue that the level of clutter suppression required for reliable detection and tracking
can be achieved only by implementing novel spatiotemporal image processing methods rather than spatial
filtering alone. Note that in order to make temporal processing efficient, clutter rejection algorithms must
be supplemented by very accurate jitter estimation and scene stabilization techniques that compensate for
platform vibrations and eliminate residual frame misalignment. Our image registration/stabilization tech-
niques are entirely different from those previously used. Stabilization is performed iteratively in the course
of clutter rejection, and the corresponding stabilization algorithm is a part of the clutter rejection architec-
ture. We show that this novel approach is extremely efficient allowing for very accurate interpolation and
image reconstruction in a wide variety of conditions.

However, for a variety of moving platforms, one may expect difficult scenarios where even after clutter
rejection the effective SNR is low, so that the in-frame detection with a given acceptable FAR is not possible.
The only way to overcome this difficulty is to develop efficient track-before-detect architectures based on
spatial-temporal NLF methods. These algorithms should process a series of frames simultaneously without
detecting targets in each frame accumulating information along hypothetical tracks.
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2. The Developed System

In this research, we focus on developing algorithms and software for adaptive clutter suppression, target
detection and multiple target tracking for a variety of observation conditions; tuning and optimization of
these algorithms for particular scenarios; and testing and validation through synthetic simulations and pro-
cessing of real data. The primary goal is to develop a viable prototype of the multiple target tracking system
that includes a reconfigurable, adaptive clutter rejection (CLUR) system that can be tested using a built-in
simulator which mimics real environments. The developed system and corresponding software tools have
the following functionalities and capabilities:

1. Built-in generator of image sequences with moving point illumination sources (targets), background
clutter due to cloud cover, jitter due to platform vibrations, and sensor noise.

2. A bank of image processing algorithms (CLUR filters) with a reconfigurable architecture and ability
to compensate for strong signals from bright targets and outliers.

3. Auto-tuning and auto-selection algorithms that allow for automatic selection of the optimal filter from
the bank for current conditions.

4. In-frame detection algorithms with constant false alarm rate (stabilization of false alarms).
5. ONF-based multitarget tracking algorithms, in particular:

(a) Changepoint detection-based track initiation algorithms
(b) Identification of detections as belonging to existing tracks
(c) Forming new tracks and deletion of false tracks
(d) Changepoint detection-based track termination

6. Graphical user interface (GUI) for visualization of the results of processing and for input data and
parameters.

A general block-diagram of the system with the corresponding data/signal processing flow is shown in
Figure 13.1.

Figure 13.1: Block-diagram of the CLUR-detection-tracking system.

This system exploits advanced spatiotemporal image processing methods for clutter rejection with strong
signal compensation, changepoint detection based track initiation and termination algorithms, NLF-based
target tracking algorithms, and global data association (optimal for association of all detections but not
locally optimal for a particular detection), among others.
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3. Spatiotemporal Image Processing Algorithms for Clutter Rejection

The developed baseline CLUR technique is based on a multi-parametric approximation of clutter (regression-
type modeling) that leads to an adaptive spatial-temporal filtering (image processing) algorithm. The “coef-
ficients” of the filter are calculated adaptively according to the minimum distance algorithm. The adaptive
spatial-temporal filter allows one to suppress any background, regardless of its spatial variation. It not only
whitens the data but also corrects all translational and rotational distortions. The results of an experimental
study presented in Section 5 show that the proposed algorithm gives a substantial gain compared to the best
existing spatial techniques as well as to the industry standard temporal differencing method.

We start with a description of the basic idea and a generic CLUR algorithm for the class of parametric
problems that involve parametric approximations of the function bn(r) – background clutter. This approach
was first proposed by Tartakovsky and Blažek [166]. Note that we do not use any assumptions on the
statistical properties of clutter. All we assume is that clutter is an arbitrary function of spatial coordinates
(may be a quite sharp function) and a slowly varying function of time in a certain time interval m.

The basic iterative CLUR algorithm that includes jitter compensation has the following form:
1. Initialization. This step can be performed in various ways. Typically this step requires about m

observations and the result of the initialization stage are the pilot estimates θ̂k(m), (δ̂1, . . . , δ̂m), and back-
ground b̂m(rij) =

∑M
k=1 θ̂k(m)fk(rij−δ̂m), where {fk} is the orthogonal basis (Fourier, wavelets, splines),

δ is unknown shifts due to vibrations (jitter), and θ are parameters in the space-time splitting decomposition
(approximation) of clutter bn(r). Initialization schemes include autonomous algorithms of estimation of
shifts between two frames based on simple spline-approximations.

2. Typical Step b̄n, n > m.
(a) Jitter Estimation. The estimate b̂n−1(rij) obtained from the previous step is compared with the

n-th frame (starting with n = m), and the ML/MD estimate of jitter δ̂n is computed as the solution of the
nonlinear optimization problem with

b̂n−1(rij − δ) =
M∑
k=1

θ̂k(n− 1)fk(rij − δ).

(b) Estimation of Parameters. Having the estimates δ̂n−m+1, . . . , δ̂n, the estimates θ̂k(n) are com-
puted for the n-th frame from the least squares minimization problem by comparing the observed frame
(image) Zn(rij) with the model. This recomputing in the corrected coordinate system is equivalent to frame
alignment.

(c) Clutter estimation. Using the estimates obtained from previous steps, compute the estimate of
bn(rij) for all i and j in the corrected coordinate system,

b̂n(rij) =

M∑
k=1

θ̂k(n)fk(rij − δ̂n). (13.1)

(d) Clutter Rejection. Using the estimate (13.1), compute the residuals (filtered background)

Z̃n(rij , δ̂n) = Zn(rij)−
M∑
k=1

θ̂k(n)fk(rij − δ̂n).

Our study of various algorithms showed that the following parametric models and corresponding spatial-
temporal filters are feasible for implementation in the bank of CLUR filters:

1. Two-dimensional Fourier Series with Double Nyquist Rate —“Fourier.”
2. Two-dimensional Wavelet Series —“Wavelet.”
3. Local Polynomial Approximation —“Pol.”
4. Spline-based Interpolation Methods with Double Resolution — “Spl-DR.”
5. Spatial-temporal Autoregression — “STAR.”
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4. Target Detection and Tracking

In this section we address target detection and tracking methods within the conventional detect-then-track
approach.

4.1. In-Frame Detection Algorithms

Each target detection method specified below solves the problem of in-frame target detection and estima-
tion of targets’ positions and intensities, i.e., forms the so-called “blips.” Each blip is characterized by the
estimates of both “total” and “effective” signal intensities as well as the target position. It is assumed that a
frame is first whitened by one of the CLUR filtering algorithms. The following algorithms are available for
selection in the “in-frame target detection module”:
• “Simplest” is based upon direct data thresholding. The center of a hot pixel (which intensity is

greater then a detection threshold) is regarded as the target position estimate and the corresponding
signal amplitude as the estimate of the target intensity.
• “Optimum” is based on the precise calculation of the optimum decision-making statistic for each

node (a square composed from four pixels) with compensation of the signals from already detected
targets. It uses information about the form of the PSF. It allows for resolving two targets within one
node.
• “Sub opt” is the version of the “optimum” algorithm where the optimal decision-making statistic is

substituted by a sub-optimal one calculated approximately at the reference points located in a grid
having a period of 0.5 pixel size (two targets within one node cannot be resolved).
• “Adaptive” is a version of the “sub opt” algorithm with the automatic adjustment of the detection

threshold with the use of the background estimates. As a result, a density of falsely detected blips is
maintained constant in different fragments of a frame.

4.2. The Multitarget Tracker

The tracker performs the following operations:
• Identification/association of new detections (blips) with existing tracks.
• Initiation of new tracks based on blips that are not identified as belonging to existing tracks.
• Confirmation of newly initialized tracks.
• Deletion of unconfirmed tracks.
• Termination of tracks.
Track initiation and track termination algorithms are subdivided into the two classes: (1) signal-based

procedures that operate with likelihood ratios built on models of intensity distributions around local detec-
tions, and (2) binary algorithms that are based on blips/detections (i.e., binary quantized data).

We propose two signal-based track initiation algorithms that are based on the changepoint detection
methods that are applied to signals (intensities) in the vicinity of in-frame detections. The first algorithm
is the unlimited CUSUM-type algorithm; and the second one is the window-limited CUSUM test (WL-
CUSUM). In the following, these algorithms will be referred to as “signal-based.”

The same two types of change detection tests are used for binary quantized data (i.e., for a sequence
of detections/blips). These algorithms turn out to be more robust compared to the former signal-based,
especially when the conjecture on the Gaussian model is not true. At the same time, the loss of efficiency is
small (less than 30%) compared to the signal-based approach when the true model is indeed Gaussian.

At the stage of tracking, the track is predicted to the next step and the corresponding gate is calculated.
When target disappears, the distribution of the data in gates abruptly changes. Therefore, termination of
tracks can be effectively performed based on the quickest detection of the moment of target disappearance
similar to track initiation. Note also that a similar approach is used for termination of false tracks.
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5. Testing for Geostationary Platforms

We performed a detailed comparative study of the “industry standard” differencing method with our clutter
rejection techniques. The differencing clutter rejection method simply subtracts two consecutive frames. It
is therefore equivalent to our temporal window-limited clutter rejection filter (implemented in the bank of
CLUR filters) with the window size of 1 frame.

(a) Original frame (b) Spatial-temporal Wavelet filter (c) Differencing CLUR algorithm

Figure 13.2: The results of clutter suppression and target tracking using spatial-temporal Wavelet and dif-
ferencing CLUR filters.

We used an image sequence with moderately intense clutter and sensor noise STD σ̂N = 3. Two weak
targets were inserted in the sequence. We first used the Wavelet spatial-temporal filter with window of
20 frames. The results were very successful — the standard deviation of the residual clutter plus noise was
about 3 and both targets were tracked, as can be seen in Figure 13.2(b). By contrast, the differencing method
was not able to track targets, as seen from Figure 13.2(c). In the images, squares with no tracks attached
represent instantaneous detections part of which are false, while solid lines correspond to confirmed target
tracks.

6. Detection and Tracking by Fusing Multiple Frames Through Optimal Nonlinear Filtering

For moving platforms, such as low earth and high elliptic orbits, STSS, shipboard IRST and other sensors,
one may expect difficult situations when even after clutter rejection the effective SNR is low, so that the in-
frame detection with a given acceptable FAR is not possible. Choosing lower detection thresholds is not an
answer, since threshold lowering results in an intense flow of false detections and initiation of multiple false
tracks, which in turn leads to tracker failures. To overcome this difficulty we propose track-before-detect
(TBD) algorithms. These algorithms process a series of frames simultaneously without detecting targets in
each and every frame, i.e., they accumulate information along hypothetical tracks.

The proposed TBD architecture is based on optimal nonlinear filtering (ONF) for switching multiple
models. We show that the optimal TBD algorithm can be represented in the form of a bank of interact-
ing nonlinear Bayesian matched filters. The output of this bank is the unnormalized posterior density for
the target position given previous data. The TBD algorithm is recursive and does not require pruning of
hypotheses. An important feature of the algorithm is that it does not require linear dependence between
observations and the state process. This allows one to build a TBD algorithm that handles highly nonlinear
δ-like target signatures characteristic for small targets in IR images. This algorithm is a particular case of a
more general approach for spatiotemporal nonlinear filtering outlined in Chapter 2, Section 2.

Therefore, in certain important scenarios tracking with the conventional detect-then-track scheme as
well as with the bank of 3D matched filters (3DMF) is not possible, in which case the NLF-based TBD
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methods are needed. We now present a comparative analysis with the industry standard bank of 3D matched
filters (3DMF) for a challenging data sets that contain strong sea glint.

As possible target dynamics we chose 16 different directions of motion (throughout a 360 degree angle)
and a wide range of velocities (from 1 to 5 pixels per frame). Only transitions to neighboring (direction-
wise and speed-wise) states were allowed by the Markov model with probabilities of switch equal to 0.1
for every direction of change. Probabilities of changes in direction and speed were considered separately
and the probabilities of complex direction/speed transitions were obtained by multiplying the two separate
probabilities. The target signal was simulated by a square of 3× 3 pixels with an average per-pixel SNR of
approximately 0.2 (−7 dB) for the sea glint area, about 1-2 (0 − 3 dB) for the rest of the sea territory and
about 0.1 (−10 dB) for some of the artifacts inside the coastal area at the bottom of the scenery. In order to
illustrate the power of the developed ONF-based TBD algorithm, no background removal was performed on
the images before the tracking, which complicates the problem tremendously. The target enters the sea-glint
area at frame 16. First, it moves along a straight-line trajectory. Upon entering the glint area the target starts
a slight maneuver, decreasing the vertical component of its velocity by 1 pixel per frame. At frame 26 the
maneuver is terminated and the target proceeds to move along a straight-line trajectory.

(a) Target tracking by ONF-TBD (b) Target tracking by 3DMF

Figure 13.3: The results of target tracking in video.

The screen-shots with the tracking results for ONF-TBD and 3DMF are shown in Figure 13.3. This data
set represents a video stream that was obtained with a Raytheon VOx long-wave 320× 240 imager pointed
at sun-glint over the Pacific Ocean. The solid red line corresponds to the true target trajectory, while the
blue “+” line corresponds to the estimated trajectory. Once the ONF-TBD finds the target it tracks it well,
even in sea glint and when it performs a maneuver. On the other hand, the 3DMF bank tracks the target well
only until the target enters the sea glint area. In sea glint, it immediately loses the target.

Based on the experimental results we can conclude that (1) the popular 3DMF bank has poor perfor-
mance when detecting dim maneuvering targets, and (2) the proposed ONF-based TBD algorithm is very
robust with respect to both target maneuvering and very low SNR.
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Chapter 14

Testing and Validation: A Disaster Scenario

1. Creation of a Disaster Scenario Combining all Parts Together

We have created a scenario illustrating how all parts of the MURI project could fit together in a realistic
scenario.To this end, we ran an undergraduate REU project based at UCLA called “Disaster LA” in which
the students developed the details of the disaster plot. In order to construct a reasonable scenario and also
describe a realistic response from the local authorities,the students have been in contact with the Los An-
geles Police Department’s Real-time Analysis and Critical Response (RACR) division,which is tasked with
analyzing incoming crime and emergency data and developing appropriate responses. The officers working
in RACR have been instrumental in aiding in development of the scenario’s timeline, and in determining
how the various technologies may be useful to such a government agency.

The basic element of the disaster scenario involves the terrorist detonation of multiple high explosives
in various areas of Los Angeles, and the subsequent aftermath.The attack actually begins, however, with a
Denial of Service (DOS) attack on the internet communication capabilities of the LAPD and other emer-
gency responders. The student’s then imagine that conventional, chemical (in the form of a noxious gas),
and nuclear (a “dirty bomb”) explosions have been set off in areas such as Los Angeles International Airport
(LAX), downtown LA, and Westwood (where UCLA is located). Following these detonations, the author-
ities must use the relevant technologies to safely secure the dangerous areas, help people evacuate to safe
locations, stop any potential civil unrest, and identify and apprehend the terrorists involved in the plot.

To accomplish these goals, the authorities are first imagined to be using state of the art DOS detection
algorithms to block the internet attack and keep their information channels open and working. Though the
bombs are successfully detonated by the terrorists, the police are able to respond quickly to the areas, and
use swarms of autonomous robots to detect the boundaries of the dangerous areas (those with high radiation
or containing poisonous gases) so that civilians can be relocated outside of these danger zones. To deal with
possible panic in the general population, the police use real-time crime mapping and prediction algorithms
to send their already stressed forces to only those locations automatically designated as most dangerous. In
order to identify the suspects involved in the attack, the authorities use video footage captured from a number
of networks of autonomous cameras located throughout the city, each running video-tracking algorithms to
identify suspicious behavior (an individual leaving behind a brief case in LAX, for example) and follow the
individuals involved. These suspects are then fed into a program that keeps track of known terrorists and
their associates to identify who among them are likely perpetrators for this type of attack.

Though the scenario envisions technologies that are, in some cases, not yet developed for field work,
each of the projects has been simulated on a computer to provide proof-of-concept for the scenario. In doing
so, the students have created helpful software packages and, in some cases, improvements in the algorithms
or the analysis of data that underlies them. In this way, the students have not only created an interesting
presentation that showcases the technologies and their potential, but also aided in the progress needed to
achieve the level of capabilities they have imagined.
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Chapter 15

Technology Transfer

1. Transition to China Lake Naval Weapons Center

Unmanned air systems, ground- and underwater-vehicles now provide a range of important functions in
naval operations. Fielded systems, however, require extensive teams of highly trained operators and sup-
port personnel. DOD requirements and science and technology priorities address the need for increased
autonomy with the warfighter monitoring and supervising multiple systems to effectively leverage assets
while reducing individual workload and numbers of personnel. Co-PI Bertozzi served as a consultant on
an ONR funded project developed cooperative control algorithms for unmanned vehicles and suggested that
that project use the algorithm developed in [93] funded by this MURI award. The searching algorithm has
now been ported to the Multiple Unified Simulation Environment (MUSE) in use at the Naval Air Warfare
Center (NAWCWD), China Lake. MUSE integrates ground station control with respective platform six
degree-of-freedom simulation and sensor models and employs MetaVR scene generation to support a num-
ber of UAVs. This enables high fidelity simulations of larger systems like the RQ/MQ-1 Predadator, and
MQ-9 Reaper, as well as smaller systems like the RQ-7 Shadow. Often used in training applications, MUSE
was adapted to incorporate new functions and capabilities specific to integrated systems test and evaluation.

Source code for random search based on Levy processes was provided to NAWCWD at China Lake. The
researchers at China Lake implemented the code on two different simulation platforms. The first simulation
environment was a freeware flight simulator that provided a faster than real time simulation conditions.
The second simulation was the MUSE code package that provided realistic simulation for multiple UAV
platforms. The capability of a group of random searchers to find a stationary and moving target using the
algorithm provided was simulated in both the flight simulator and the MUSE. It can be shown that optimal
search performance for stationary targets with no a-priori information is a deterministic search, and it was
shown that the random search achieved near optimal search performance. Moreover, the random search
found moving targets in a shorter time span than the deterministic code. These results have lead to continued
work at NAWCWD-China Lake in the area of autonomous search.

Points of contact at China Lake: Arjuna Flenner and Katia Estabridis.

2. Transition to the Los Angeles Police Department (LAPD)

2.1. Geographic Profiling

A prototype tool for geographic profiling of serial criminal offenders was transferred to LAPD in September
2009. This tool is based on the algorithm for Geographic Profiling developed by the 2009 LAPD-RIPS
team and has a user interface based around Google Earth. Geographic profiles score the likelihood that a
serial offender has a key anchor point in a given location. This tool is innovating in that it incorporates
information about local demographic and spatial features of the environment into the profile. Subsequent
interactions with LAPD indicate that the tool is used with the Real-time Analysis and Critical Response
Division (RACR) at LAPD. A similar prototype tool for infilling information on suspected gangs involved
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in gang shootings was provided to LAPD by the 2010 LAPD-RIPS team. This tool examines a given crime
and, based on rivalry histories, location and timing of the crime, probabilistically score which of many
alternative gangs is a likely suspect gang.

2.2. Crime Mapping

The paper [155] was the impetus for a summer REU project at IPAM as part of their RIPS program. Lead
author Laura Smith (finishing PhD student) was the mentor for this project. The students wrote a suite of
crime mapping software for LAPD based on their current crime briefing strategies and data collects. The
students implemented methods from the above paper along with more standard kernel estimation methods.
For the specific police data needs, as discussed below, the kernel methods worked as well as the new method,
however there are many crime mapping applications where the standard method is much less effective and
these are illustrated in the manuscript. The RIPS code development was funded by an NSF grant to IPAM.
The project was specifically chosen based on the work in the above paper and the plan was to implement
these and other algorithms for a real police tool application. Code has been given to LAPD for use in an
upcoming predictive policing experiment.

UCLA coPI Brantingham is directly involved in this planned predictive policing experiment. The inten-
tion is to have a control group and a target area so that we can test the effectiveness of the crime algorithms
for crime reduction against current LAPD practices. The plan would be to work the tool into LAPD’s daily
war room process. Laura Smith and the team built the interface to mirror our current process of looking at a
1, 3 and 7 day retrospective map at the daily war room crime briefing. When LAPD launches the test, they
will use the 1, 3 and 7 day forecast density maps to plan deployment of both regular patrol resources and of
specialized units or discretionary resources. They hope to have results by the end of the year.

Point of contact at LAPD: Captain Sean Malinowski, sean.malinowski@lapd.lacity.org.

3. Transition to DOE

The developed changepoint detection methods and algorithms, particularly decentralized methods, can be
effectively used for the design of working prototypes of detection and tracking systems for detecting and
tracking terrorist activities and for detection and isolation of computer network intrusions. The advanced
changepoint detection algorithms developed at the University of Southern California (Prof. Tartakovsky) for
anomaly-based Intrusion Detection System have been transferred to the Oak Ridge National Laboratory for
tuning and testing over UltraScience Net (USN) network research testbed for operation at 1-10 Gbps rates
(PI Dr. Rao of the DOE Oak Ridge National Lab). Preliminary testing shows that this statistical anomaly-
based IDS provides reliable and rapid detection of certain classes of attacks with very low false alarm rate;
these attacks are not easily amenable to detection by existing signature-based methods.

4. Transition to MDA and Air Force

The advanced target detection and tracking system (developed by Prof. Tartakovsky) that includes a bank
of clutter rejection filters based on spatial-temporal image processing algorithms has been transferred to
MDA and the Hanscom Air Force Base for evaluation and testing (POC James Brown). The developed
algorithms guarantee very high detection/tracking performance for small ballistic targets (at boost and mid
coarse stages) allowing almost complete suppression of solar cloud clutter in space-based IR sensors (SBIRS
HIGH). Such performance cannot be achieved with existing industry standard methods.

5. Transition to Commercial Companies

Prof. Papadopoulos continues discussions and collaboration with ESoft. ESoft is very interested in our ap-
proach to characterize the IP addresses of spammers, and wants us to investigate approaches where they can
classify entire blocks of addresses as suspicious. ESoft produces appliances that sit in a customer’s network,
which provide information and receive constant updates from the central office about new vulnerabilities
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and also send back reports with alerts. They are looking at new algorithms to go into the appliance, and part
of them may be our approach to characterize addresses sending spam.

Prof. Medioni has been in discussion with a company named InnoVision Optics, Co about transferring
our TNT techniques in a multi-camera system. InnoVision Optics provides optical capturing and camera
support for many industries, such as movie production, etc. Their current sophisticated multi-camera cap-
turing system involves intensive human interaction to track a tagged object of interest, such as the basketball
in a game. They plan to use an automatic (or minimal human interaction) tracking solution to remove human
operators from the control loop and achieve more efficient multi-camera collaboration.

Video tracking algorithms developed at USC (Prof. Medioni) have been transferred to Torrey Pines
Logic, Inc., San Diego, CA for embedding into a shipboard IRST testbed and testing against real IR data
sets (collected by the Navy) that contain multiple extended targets barely visible in sea-glint.
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